CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 227-235.DOI: 10.11949/0438-1157.20210154
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
ZHANG Yashuang(),LI Hong,CONG Haifeng,HAN Hongming,LI Xingang,GAO Xin()
Received:
2021-01-25
Revised:
2021-03-01
Online:
2021-06-20
Published:
2021-06-20
Contact:
GAO Xin
通讯作者:
高鑫
作者简介:
张亚爽(1996—),女,硕士研究生,基金资助:
CLC Number:
ZHANG Yashuang, LI Hong, CONG Haifeng, HAN Hongming, LI Xingang, GAO Xin. Numerical simulation of microwave-enhanced spiral liquid-bridge falling film evaporator[J]. CIESC Journal, 2021, 72(S1): 227-235.
张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
水的介电常数[ | 88.15-0.414T+0.131e-2T2-0.046e-4T3 |
水的介电损耗[ | 28.472-0.971T+1.555e-2T2-1.205e-4T3+4.638e-7T4-1.387e-9T5+2.82e-12T6 |
初始温度,T0 | 25 K |
弹簧截面固定宽度,B | 0.12 mm |
蒸发潜热,?Hwater | 2257.6 kJ/kg |
玻璃的相对介电常数 | 4.2 |
空气的相对介电常数 | 1 |
蒸发率测量时间 | 30 min |
Table 1 Basic parameters setting
参数 | 数值 |
---|---|
水的介电常数[ | 88.15-0.414T+0.131e-2T2-0.046e-4T3 |
水的介电损耗[ | 28.472-0.971T+1.555e-2T2-1.205e-4T3+4.638e-7T4-1.387e-9T5+2.82e-12T6 |
初始温度,T0 | 25 K |
弹簧截面固定宽度,B | 0.12 mm |
蒸发潜热,?Hwater | 2257.6 kJ/kg |
玻璃的相对介电常数 | 4.2 |
空气的相对介电常数 | 1 |
蒸发率测量时间 | 30 min |
1 | Stefanidis G D, Muñoz A N, Sturm G S J, et al. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts [J]. Reviews in Chemical Engineering, 2014, 30(3): 233-259. |
2 | Wei W, Shao Z S, Zhang Y Y, et al. Fundamentals and applications of microwave energy in rock and concrete processing — a review [J]. Applied Thermal Engineering, 2019, 157: 113751. |
3 | Yu S Z, Duan Y, Mao X N, et al. Pyrolysis of methyl ricinoleate by microwave-assisted heating coupled with atomization feeding [J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 176-183. |
4 | Rattanadecho P, Suwannapum N, Watanasungsuit A, et al. Drying of dielectric materials using a continuous microwave belt drier (case study: ceramics and natural rubber) [J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 157-163. |
5 | Meera G, Rohit K R, Saranya S, et al. Microwave assisted synthesis of five membered nitrogen heterocycles [J]. RSC Advances, 2020, 10(59): 36031-36041. |
6 | Altman E, Stefanidis G D, van Gerven T, et al. Process intensification of reactive distillation for the synthesis of n-propyl propionate: the effects of microwave radiation on molecular separation and esterification reaction [J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10287-10296. |
7 | Chronopoulos T, Fernandez-Diez Y, Maroto-Valer M M, et al. CO2 desorption via microwave heating for post-combustion carbon capture [J]. Microporous and Mesoporous Materials, 2014, 197: 288-290. |
8 | Proestos C, Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds [J]. LWT - Food Science and Technology, 2008, 41(4): 652-659. |
9 | Jacotet-Navarro M, Rombaut N, Fabiano-Tixier A S, et al. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary [J]. Ultrasonics Sonochemistry, 2015, 27: 102-109. |
10 | Gao X, Shu D D, Li X G, et al. Improved film evaporator for mechanistic understanding of microwave-induced separation process [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 759-771. |
11 | Li H, Liu J H, Li X G, et al. Microwave-induced polar/nonpolar mixture separation performance in a film evaporation process [J]. AIChE Journal, 2019, 65(2): 745-754. |
12 | 黄卡玛, 杨晓庆. 微波加快化学反应中非热效应研究的新进展[J]. 自然科学进展, 2006, 16(3): 273-279. |
Huang K M, Yang X Q. New progress in research on non-thermal effects in microwave accelerated chemical reaction [J]. Process in Natural Science, 2006, 16(3): 273-279. | |
13 | Ayappa K G, Brandon S, Derby J J, et al. Microwave driven convection in a square cavity [J]. AIChE Journal, 1994, 40(7): 1268-1272. |
14 | Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating [J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. |
15 | Tang Z M, Huang K M, Liao Y H, et al. Study on stability of electric field in multimode microwave heating cavity [J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 50(2): 321-330. |
16 | Sturm G S J, Verweij M D, Gerven T V, et al. On the parametric sensitivity of heat generation by resonant microwave fields in process fluids [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 375-388. |
17 | Gao X, Liu X S, Yan P, et al. Numerical analysis and optimization of the microwave inductive heating performance of water film [J]. International Journal of Heat and Mass Transfer, 2019, 139: 17-30. |
18 | Pham N D, Khan M I H, Karim M A. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying [J]. Food Chemistry, 2020, 325: 126932. |
19 | Sebera V, Nasswettrová A, Nikl K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator [J]. Drying Technology, 2012, 30(13): 1388-1396. |
20 | 曹湘琪, 姚斌, 郑勤红, 等. 凹弧面内筒壁对微波反应器加热效率及均匀性的影响[J]. 现代制造工程, 2016, (9): 13-16, 38. |
Cao X Q, Yao B, Zheng Q H, et al. Influence of the cylindrical inner wall for concave cambered surface to microwave heating efficiency and uniformity [J]. Modern Manufacturing Engineering, 2016, (9): 13-16, 38. | |
21 | Feng H, Yin Y, Tang J M. Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling [J]. Food Engineering Reviews, 2012, 4(2): 89-106. |
22 | Nishioka M, Miyakawa M, Daino Y, et al. Single-mode microwave reactor used for continuous flow reactions under elevated pressure [J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4683-4687. |
23 | 李伊帆, 王凤霞, 解田, 等. 双端口旋转对微波加热均匀性和互耦的影响 [J]. 太赫兹科学与电子信息学报, 2020, 18(2): 264-268, 277. |
Li Y F, Wang F X, Xie T, et al. Influence of dual port rotation on microwave heating uniformity and mutual coupling [J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(2): 264-268, 277. | |
24 | 王永福, 周荣琪, 段占庭. 二元混合物降膜蒸发的数值模拟[J]. 化工学报, 2002, 53(9): 946-950. |
Wang Y F, Zhou R Q, Duan Z T. Numerical simulation of falling film evaporation of binary mixture [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(9): 946-950. | |
25 | Yeong S P, Law M C, Lee C C V, et al. Modelling batch microwave heating of water [J]. IOP Conference Series: Materials Science and Engineering, 2017, 217: 012035. |
26 | Wu Y Y. Simultaneous heat and mass transfer in laminar falling film on the outside of a circular tube [J]. International Journal of Heat and Mass Transfer, 2016, 93: 1089-1099. |
27 | Lee G L, Law M C, Lee V C C. Numerical modelling of liquid heating and boiling phenomena under microwave irradiation using OpenFOAM [J]. International Journal of Heat and Mass Transfer, 2020, 148: 119096. |
28 | Carwile L C, Hoge H J. Thermal conductivity of Pyrex glass: selected values [R]. Defense Technical Information Center, 1966. |
29 | Li H, Shi S L, Lin B Q, et al. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49-61. |
30 | 卿培亮. 微波加热管内降膜蒸发过程的传热研究[D]. 成都: 四川大学, 2006. |
Qing P L. Investigation on heat transfer of falling film evaporation by microwave heating [D]. Chengdu: Sichuan University, 2006. | |
31 | Cong H F, Zhao Z Y, Li X G, et al. Liquid-bridge flow in the channel of helical string and its application to gas-liquid contacting process [J]. AIChE Journal, 2018, 64(9): 3360-3368. |
32 | Kent S, Kent E F. Microwave heating of dielectric lossy objects [J]. Journal of Microwave Power and Electromagnetic Energy, 2002, 37(2): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||