CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 560-566.DOI: 10.11949/0438-1157.20201525
• Material science and engineering, nanotechnology • Previous Articles
ZHOU Dongyi1,2,3(),XIAO Xianghua1,XIAO Biao1,3,LIU Yicai2()
Received:
2020-10-30
Revised:
2021-01-22
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIU Yicai
通讯作者:
刘益才
作者简介:
周东一(1974—),男,硕士,教授,基金资助:
CLC Number:
ZHOU Dongyi, XIAO Xianghua, XIAO Biao, LIU Yicai. Method of determining optimum mass ratio of fatty acids in composite phase change materials for thermal energy storage[J]. CIESC Journal, 2021, 72(S1): 560-566.
周东一, 肖湘华, 肖飚, 刘益才. 脂肪类复合相变储能材料中脂肪酸最佳质量含量的确定方法[J]. 化工学报, 2021, 72(S1): 560-566.
Add to citation manager EndNote|Ris|BibTeX
CA-MA质量含量/% | 热处理前质量/g | 热处理后质量/g | 渗透百分比/% |
---|---|---|---|
90 | 0.5 | 0.498 | 0.5 |
91 | 0.5 | 0.498 | 0.5 |
92 | 0.5 | 0.498 | 0.5 |
92.2 | 0.5 | 0.498 | 0.5 |
92.4 | 0.5 | 0.495 | 1.0 |
92.6 | 0.5 | 0.493 | 1.4 |
92.8 | 0.5 | 0.488 | 2.5 |
93 | 0.5 | 0.474 | 5.2 |
94 | 0.5 | 0.418 | 16.5 |
95 | 0.5 | 0.357 | 28.6 |
Table 1 Mass loss of CA-MA/EG composite phase change materials
CA-MA质量含量/% | 热处理前质量/g | 热处理后质量/g | 渗透百分比/% |
---|---|---|---|
90 | 0.5 | 0.498 | 0.5 |
91 | 0.5 | 0.498 | 0.5 |
92 | 0.5 | 0.498 | 0.5 |
92.2 | 0.5 | 0.498 | 0.5 |
92.4 | 0.5 | 0.495 | 1.0 |
92.6 | 0.5 | 0.493 | 1.4 |
92.8 | 0.5 | 0.488 | 2.5 |
93 | 0.5 | 0.474 | 5.2 |
94 | 0.5 | 0.418 | 16.5 |
95 | 0.5 | 0.357 | 28.6 |
渗出情况 | 渗出百分比 | 稳定性 |
---|---|---|
不渗出 | Φ≤0 | 非常稳定 |
渗出极少(可视为不渗出) | 0<Φ≤5% | 稳定 |
微量渗出 | 5%<Φ≤15% | 基本稳定 |
少量渗出 | 15%<Φ≤30% | 基本不稳定 |
中量渗出 | 30%<Φ≤50% | 不稳定 |
大量渗出 | Φ>50% | 非常不稳定 |
Table 2 Seepage-stability-assessment standard
渗出情况 | 渗出百分比 | 稳定性 |
---|---|---|
不渗出 | Φ≤0 | 非常稳定 |
渗出极少(可视为不渗出) | 0<Φ≤5% | 稳定 |
微量渗出 | 5%<Φ≤15% | 基本稳定 |
少量渗出 | 15%<Φ≤30% | 基本不稳定 |
中量渗出 | 30%<Φ≤50% | 不稳定 |
大量渗出 | Φ>50% | 非常不稳定 |
MA质量含量/% | 渗出圈平均直径/mm | 渗出百分比Φ/% | 判断标准 | 判断结果 |
---|---|---|---|---|
90 | — | — | Φ≤0 | 非常稳定 |
91 | — | — | Φ≤0 | 非常稳定 |
92 | — | — | Φ≤0 | 非常稳定 |
92.2 | — | — | Φ≤0 | 非常稳定 |
92.4 | — | — | Φ≤0 | 非常稳定 |
92.6 | 31.2 | 4.0 | 0<Φ≤5% | 稳定 |
92.8 | 32.5 | 8.3 | 5%<Φ≤15% | 基本稳定 |
93 | 36.2 | 20.6 | 15%<Φ≤30% | 基本不稳定 |
94 | 42.3 | 41.0 | 30%<Φ≤50% | 不稳定 |
95 | 76.8 | 156.0 | Φ>50% | 非常不稳定 |
Table 3 CA-MA/EG composite phase change materials seepage-stability assessment
MA质量含量/% | 渗出圈平均直径/mm | 渗出百分比Φ/% | 判断标准 | 判断结果 |
---|---|---|---|---|
90 | — | — | Φ≤0 | 非常稳定 |
91 | — | — | Φ≤0 | 非常稳定 |
92 | — | — | Φ≤0 | 非常稳定 |
92.2 | — | — | Φ≤0 | 非常稳定 |
92.4 | — | — | Φ≤0 | 非常稳定 |
92.6 | 31.2 | 4.0 | 0<Φ≤5% | 稳定 |
92.8 | 32.5 | 8.3 | 5%<Φ≤15% | 基本稳定 |
93 | 36.2 | 20.6 | 15%<Φ≤30% | 基本不稳定 |
94 | 42.3 | 41.0 | 30%<Φ≤50% | 不稳定 |
95 | 76.8 | 156.0 | Φ>50% | 非常不稳定 |
1 | Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
2 | Zhou Z H, Liu J W, Wang C D, et al. Research on the application of phase-change heat storage in centralized solar hot water system [J]. Journal of Cleaner Production, 2018, 198: 1262-1275. |
3 | Souayfane F, Fardoun F, Biwole P H. Phase change materials (PCM) for cooling applications in buildings: a review [J]. Energy and Buildings, 2016, 129: 396-431. |
4 | Pereira da Cunha J, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials — a review [J]. Applied Energy, 2016, 177: 227-238. |
5 | Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application [J]. International Journal of Refrigeration, 2012, 35(8): 2053-2077. |
6 | 章学来, 徐笑锋, 周孙希, 等. 蓄冷技术在冷链物流中的研究进展[J]. 制冷与空调, 2017, 17(12): 88-92. |
Zhang X L, Xu X F, Zhou S X, et al. Research progress of cold storage technology in cold chain logistics [J]. Refrigeration and Air-Conditioning, 2017, 17(12): 88-92. | |
7 | 傅一波, 王冬梅, 朱宏. 低温相变储能材料研究进展及其应用[J]. 材料导报, 2016, 30(S2): 222-226. |
Fu Y B, Wang D M, Zhu H. Review on low temperature phase change materials and its application [J]. Materials Review, 2016, 30(S2): 222-226. | |
8 | Kenisarin M M. Thermophysical properties of some organic phase change materials for latent heat storage. a review [J]. Solar Energy, 2014, 107: 553-575. |
9 | Xu X X, Cui H Z, Memon S A, et al. Development of novel composite PCM for thermal energy storage using CaCl2·6H2O with graphene oxide and SrCl2·6H2O [J]. Energy and Buildings, 2017, 156: 163-172. |
10 | Zhang P, Xiao X, Ma Z W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement [J]. Applied Energy, 2016, 165: 472-510. |
11 | Şahan N, Paksoy H. Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change material composite for thermal energy storage [J]. Composites Part B: Engineering, 2017, 126: 88-93. |
12 | Kahwaji S, White M A. Prediction of the properties of eutectic fatty acid phase change materials [J]. Thermochimica Acta, 2018, 660: 94-100. |
13 | Yuan Y P, Zhang N, Tao W Q, et al. Fatty acids as phase change materials: a review [J]. Renewable and Sustainable Energy Reviews, 2014, 29: 482-498. |
14 | Yuan Y P, Tao W Q, Cao X L, et al. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture [J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2889-2891. |
15 | Wen R L, Zhang X G, Huang Z H, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2018, 178: 273-279. |
16 | Zhou D Y, Zhou Y H, Liu Y C, et al. Preparation and performance of capric-myristic acid binary eutectic mixtures for latent heat thermal energy storages [J]. Journal of Nanomaterials, 2019, 2019: 1-9. |
17 | Li M, Kao H T, Wu Z S, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials [J]. Applied Energy, 2011, 88(5): 1606-1612. |
18 | Fan L W, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24-46. |
19 | Wu S F, Yan T, Kuai Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review [J]. Energy Storage Materials, 2020, 25: 251-295. |
20 | Xu T, Chen Q L, Huang G S, et al. Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material [J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146. |
21 | Ling Z Y, Chen J J, Xu T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model [J]. Energy Conversion and Management, 2015, 102: 202-208. |
22 | Zhou D Y, Zhou Y H, Yuan J W, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage [J]. Journal of Nanomaterials, 2020, 2020: 1-9. |
23 | Jamekhorshid A, Sadrameli S M, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium [J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. |
24 | Zhou D Y, Yuan J W, Zhou Y H, et al. Preparation and properties of capric-myristic acid/expanded graphite composite phase change materials for latent heat thermal energy storage [J]. Energies, 2020, 13(10): 2462. |
25 | Zhang N, Yuan Y P, Wang X, et al. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage [J]. Chemical Engineering Journal, 2013, 231: 214-219. |
26 | Zhang H, Gao X N, Chen C X, et al. A capric-palmitic-stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage [J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 138-145. |
27 | 曹晓玲, 袁艳平, 汪玺, 等. 肉豆蔻酸/膨胀石墨复合相变材料的制备及性能研究[J]. 太阳能学报, 2014, 35(8): 1493-1498. |
Cao X L, Yuan Y P, Wang X, et al. Preparation and thermal property of myristic acid/expanded graphite composite as phase change material [J]. Acta Energiae Solaris Sinica, 2014, 35(8): 1493-1498. | |
28 | Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage [J]. Solar Energy, 2014, 99: 259-266. |
29 | 孙建忠, 吴子钊. 建材用相变工质材料渗出程度评价方法的研究[J]. 新型建筑材料, 2004, 31(7): 43-46. |
Sun J Z, Wu Z Z. Study on evaluation method of exudation of phase transition working substance for building materials [J]. New Building Materials, 2004, 31(7): 43-46. | |
30 | Zhou D Y, Yuan J W, Zhou Y H, et al. Preparation and characterization of myristic acid/expanded graphite composite phase change materials for thermal energy storage [J]. Scientific Reports, 2020, 10: 10889. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[4] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[5] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[6] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[7] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[8] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[9] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[10] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[11] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[14] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[15] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||