CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 59-72.DOI: 10.11949/0438-1157.20210880
• Reviews and monographs • Previous Articles Next Articles
Pengbo FU1(),Jinyi TIAN1,Wenjie LYU2,Yuan HUANG3,Yi LIU1,Hao LU2,Qiang YANG2,Guangli XIU1,Hualin WANG1()
Received:
2021-06-29
Revised:
2021-08-05
Online:
2022-01-18
Published:
2022-01-05
Contact:
Hualin WANG
付鹏波1(),田金乙1,吕文杰2,黄渊3,刘毅1,卢浩2,杨强2,修光利1,汪华林1()
通讯作者:
汪华林
作者简介:
付鹏波(1990—),男,博士,特聘副研究员,基金资助:
CLC Number:
Pengbo FU,Jinyi TIAN,Wenjie LYU,Yuan HUANG,Yi LIU,Hao LU,Qiang YANG,Guangli XIU,Hualin WANG. Physical water treatment technology[J]. CIESC Journal, 2022, 73(1): 59-72.
付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72.
Add to citation manager EndNote|Ris|BibTeX
技术名称 | 分离效率/% | 压降/MPa | 占地/m2 | 废水回用率/% | 再生周期/h | 设备投资(400 m3/h)/万元 | 操作及维护费用/(万元/年) |
---|---|---|---|---|---|---|---|
沸腾床分离 | 90~95 | 0.2~0.3 | 120~150 | ≥ 98 | 96~192 | 1200~1400 | 10~20 |
旋流分离 | 30~60 | 0.2~0.3 | 50~70 | ≥ 95 | - | 1000~1200 | 10~20 |
陶瓷膜分离 | 95~99 | 0.3~0.6 | 120~150 | ≥ 90 | 2~8 | 2800~3600 | 400~800 |
布袋过滤分离 | 40~70 | 0.2~0.5 | 120~150 | ≥ 90 | 3~5 | 1400~1800 | 200~400 |
Table 1 Comparison of different MTO quench water purification technologies
技术名称 | 分离效率/% | 压降/MPa | 占地/m2 | 废水回用率/% | 再生周期/h | 设备投资(400 m3/h)/万元 | 操作及维护费用/(万元/年) |
---|---|---|---|---|---|---|---|
沸腾床分离 | 90~95 | 0.2~0.3 | 120~150 | ≥ 98 | 96~192 | 1200~1400 | 10~20 |
旋流分离 | 30~60 | 0.2~0.3 | 50~70 | ≥ 95 | - | 1000~1200 | 10~20 |
陶瓷膜分离 | 95~99 | 0.3~0.6 | 120~150 | ≥ 90 | 2~8 | 2800~3600 | 400~800 |
布袋过滤分离 | 40~70 | 0.2~0.5 | 120~150 | ≥ 90 | 3~5 | 1400~1800 | 200~400 |
技术分类 | 设备类型 | 分离粒径极限/μm |
---|---|---|
重力分离 | API分离器或撇油器 | 100~150 |
板块聚结 | CPI分离器或错流分离器 | 30~50 |
增强聚结 | 填料式聚结器 | 10~15 |
气浮 | 溶气气浮或诱导气浮 | 10~20 |
离心分离 | 水力旋流器或离心机 | 12~20 |
介质过滤 | 核桃壳等介质过滤器 | 2 |
膜过滤 | 微滤超滤纳滤等 | <1 |
Table 2 Separation accuracy of common production water treatment technology
技术分类 | 设备类型 | 分离粒径极限/μm |
---|---|---|
重力分离 | API分离器或撇油器 | 100~150 |
板块聚结 | CPI分离器或错流分离器 | 30~50 |
增强聚结 | 填料式聚结器 | 10~15 |
气浮 | 溶气气浮或诱导气浮 | 10~20 |
离心分离 | 水力旋流器或离心机 | 12~20 |
介质过滤 | 核桃壳等介质过滤器 | 2 |
膜过滤 | 微滤超滤纳滤等 | <1 |
1 | Coghlan A. Five billion people face water shortages by 2050, warns UN[Z/OL]. The United Nations, 2018. . |
2 | International energy outlook2019—with projections to 2050[Z/OL]. U.S. Energy Information Administration, 2019. . |
3 | 侯立安, 吴明红, 席北斗, 等. 2019年水环境安全热点回眸[J]. 科技导报, 2020, 38(1): 215-228. |
Hou L A, Wu M H, Xi B D, et al. Hot spots of advances in water environmental safty in 2019: an overview[J]. Science & Technology Review, 2020, 38(1): 215-228. | |
4 | 余忻, 黄悦, 张志果, 等. 水环境综合治理市场现状和发展形势分析[J]. 给水排水, 2020, 46(6): 85-88. |
Yu X, Huang Y, Zhang Z G, et al. Analysis of the market and development tendency of water environment comprehensive treatment[J]. Water & Wastewater Engineering, 2020,46(6): 85-88. | |
5 | Roinas G, Mant C, Williams J B. Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems[J]. Water Science & Technology, 2014, 69(4):703-709. |
6 | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
7 | Calmano W. Topics of water sciences and technology[J]. Environmental Science and Pollution Research International, 2004, 11(2):126. |
8 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
9 | 曲久辉. 物理技术——值得关注的清洁水处理方法[J]. 给水排水, 2014, 50(4): 1. |
Qu J H. Physical technology—a clean water treatment method worth paying attention to[J]. Water & Wastewater Engineering, 2014, 50(4): 1. | |
10 | Schaflinger U. Centrifugal separation of a mixture[J]. Fluid Dynamics Research, 1990, 6(5/6):213-249. |
11 | Al-Faqheri W, Thio T, Qasaimeh M A, et al. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review[J]. Microfluidics and Nanofluidics, 2017, 21(6):102. |
12 | Fu P B, Jiang X, Ma L, et al. Enhancement of PM2.5 cyclone separation by droplet capture and particle sorting[J]. Environmental Science & Technology, 2018, 52: 11652-11659. |
13 | Fu P B, Wang F, Yang X J, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
14 | Pan J K, Shen Q S, Cui X, et al. Cyclones of different sizes and underflow leakage for aerosol particles separation enhancement[J]. Journal of Cleaner Production, 2021, 280:124379. |
15 | 李洪懿, 陈可可, 翟丁, 等. 导电材料在膜分离领域中的应用[J]. 科技导报, 2015, 33(14): 18-23. |
Li H Y, Chen K K, Zhai D, et al. Applications of conductive materials in membrane separation industry[J]. Science & Technology Review, 2015, 33(14): 18-23. | |
16 | Dou H Z, Xu M, Wang B Y, et al. Microporous framework membranes for precise molecule/ion separations[J]. Chemical Society Reviews, 2021, 50(2): 986-1029. |
17 | Mohshim D F, Mukhtar H B, Man Z, et al. Latest development on membrane fabrication for natural gas purification: a review[J]. Journal of Engineering, 2013, 2013: 101764. |
18 | Li D K, Kou J, Sun C B, et al. The application of superconducting magnetic separation in copper-moly separation[J]. Separation Science and Technology, 2019, 54(11): 1871-1878. |
19 | Yavuz C T, Prakash A, Mayo J T, et al. Magnetic separations: from steel plants to biotechnology[J]. Chemical Engineering Science, 2009, 64(10): 2510-2521. |
20 | Yeap S P, Lim J K, Ooi B S, et al. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications[J]. Journal of Nanoparticle Research, 2017, 19(11):368. |
21 | Li J, Zhang X, Fan W Y, et al. Dissolved organic matter dominating the photodegradation of free DNA bases in aquatic environments[J]. Water Research, 2020, 179:115885. |
22 | Liu B, Wu F, Deng N S. UV-light induced photodegradation of 17α-ethynylestradiol in aqueous solutions[J]. Journal of Hazardous Materials, 2003, 98(1/2/3):311-316. |
23 | da Silva R G, Aquino Neto S, Kokoh K B, et al. Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products[J]. Journal of Power Sources, 2017, 351:174-182. |
24 | Menezes P W, Walter C, Hausmann J N, et al. Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach[J]. Angewandte Chemie International Edition, 2019, 58(46): 16569-16574. |
25 | Kobya M, Demirbas E, Parlak N U, et al. Treatment of cadmium and nickel electroplating rinse water by electrocoagulation[J]. Environmental Technology, 2010, 31(13):1471-1481. |
26 | Kobya M, Omwene P I, Ukundimana Z. Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor[J]. Journal of Environmental Chemical Engineering, 2020, 8(2):103526. |
27 | Zodi S, Potier O, Michon C, et al. Removal of arsenic and COD from industrial wastewaters by electrocoagulation[J]. Journal of Electrochemical Science and Engineering, 2011, 1(1):55-65. |
28 | Luhovskyi O F, Gryshko I A, Bernyk I M. Enhancing the efficiency of ultrasonic wastewater disinfection technology[J]. Journal of Water Chemistry and Technology, 2018, 40(2):95-101. |
29 | Blume T, Neis U. Improving chlorine disinfection of wastewater by ultrasound application[J]. Water Science and Technology, 2005, 52(10/11):139-144. |
30 | Jin X, Li Z F, Zhao X, et al. Effect of ultrasound pre-treatment on ultraviolet disinfection in controlling bacterial photoreactivation[J]. Advanced Materials Research, 2011, 347-353:2369-2374. |
31 | Oki T, Koyanaka S, Nishisu Y, et al. Advanced physical separation technology for rare metal recycling[J]. Resources Processing, 2011, 58(3):95-100. |
32 | Stea D, Foss N J, Christensen P H. Physical separation in the workplace: separation cues, separation awareness, and employee motivation[J]. European Management Journal, 2015, 33(6):462-471. |
33 | 刘毅. AOH中碳源释放利用机制及应用[D]. 上海: 华东理工大学, 2018. |
Liu Y. Experimental investigation on sludge disruption for organics release in AOH process using a hydrocyclone and its industrial application[D]. Shanghai: East China University of Science and Technology, 2018. | |
34 | Lu H, Liu Y Q, Cai J B, et al. Treatment of offshore oily produced water: research and application of a novel fibrous coalescence technique[J]. Journal of Petroleum Science and Engineering, 2019, 178: 602-608. |
35 | 汪华林. 液固旋流分离新技术[M]. 北京: 化学工业出版社, 2019. |
Wang H L. Advanced Hydrocyclone Technology for Liquid-Solid Separation [M]. Beijing: Chemical Industry Press, 2019. | |
36 | Kennedy D, Norman C. So much more to know [J]. Science, 2005, 309(5731): 78-102. |
37 | 陆夕云, 林建忠. 能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J]. 科学通报, 2017, 62(11): 1115-1118. |
Lu X Y, Lin J Z. Can we develop a general theory of the dynamics of turbulent flows and the motion of granular materials?[J]. Chinese Science Bulletin, 2017, 62(11): 1115-1118. | |
38 | Qu J H, Wang H C, Wang K J, et al. Municipal wastewater treatment in China: development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 1-7. |
39 | Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
40 | Kart J. Largest-ever USDA grant to grow vegetables with wastewater[Z/OL]. Forbes, 2018. . |
41 | van Ginkel S W, Igou T, Chen Y S. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA[J]. Resources, Conservation and Recycling, 2017, 122: 319-325. |
42 | Song T, Tian J Y, Ni L, et al. Experimental study on performance of a de-foulant hydrocyclone with different reflux devices for sewage source heat pump[J]. Applied Thermal Engineering, 2019, 149: 354-365. |
43 | Tian J Y, Ni L, Song T, et al. An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J]. Separation and Purification Technology, 2018, 206: 268-285. |
44 | Hao X D, Li J, van Loosdrecht M C M, et al. Energy recovery from wastewater: heat over organics[J]. Water Research, 2019, 161: 74-77. |
45 | Ni L, Tian J Y, Song T, et al. Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective[J]. Separation & Purification Reviews, 2019, 48(1): 30-51. |
46 | Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: a review[J]. Water Research, 2019, 162: 492-504. |
47 | Li X F, Mitch W A. Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities[J]. Environmental Science & Technology, 2018, 52(4): 1681-1689. |
48 | Yang M T, Zhang X R, Liang Q H, et al. Application of (LC/)MS/MS precursor ion scan for evaluating the occurrence, formation and control of polar halogenated DBPs in disinfected waters: a review[J]. Water Research, 2019, 158: 322-337. |
49 | Thun M, Linet M S, Cerhan J R, et al. Cancer Epidemiology and Prevention[M]. Oxford: Oxford University Press, 2017. |
50 | Crittenden J C, Trussell R R, Hand D W, et al. MWH’s Water Treatment: Principles and Design[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. |
51 | Lv W J, Yang Q, Ma L, et al. Application of minihydrocyclones in methanol-to-olefin process wastewater treatment[J]. Chemical Engineering & Technology, 2015, 38(3):504-510. |
52 | Yang Q, Lv W J, Shi L, et al. Treating methanol-to-olefin quench water by minihydrocyclone clarification and steam stripper purification[J]. Chemical Engineering & Technology, 2015, 38(3):547-552. |
53 | Yang Q, Li Z M, Lv W J, et al. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone[J]. Separation and Purification Technology, 2013, 110:93-100. |
54 | Chen J Q, Wang L, Ma S H, et al. Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): a pilot-scale study[J]. Process Safety and Environmental Protection, 2021, 152: 108-116. |
55 | Liu Y, Wang H L, Xu Y X, et al. Achieving enhanced denitrification via hydrocyclone treatment on mixed liquor recirculation in the anoxic/aerobic process[J]. Chemosphere, 2017, 189: 206-212. |
56 | Sun Y X, Liu Y, Zhang Y H, et al. Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion[J]. Chemical Engineering Journal, 2019, 374: 1364-1372. |
57 | Xu Y X, Fang Y Y, Wang Z H, et al. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research, 2018, 141: 135-144. |
58 | 蔡敬伟, 屠佳樱. 我国发展海洋资源开发装备的机遇和挑战[J]. 中国船检, 2018 (9): 68-71. |
Cai J W, Tu J Y. Opportunities and challenges for our country’s development of marine resources development equipment[J]. China Ship Survey, 2018 (9): 68-71. | |
59 | 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31. |
Zhou S W, Li Q P, Zhu H S, et al. The current state and future of offshore energy exploration and development technology[J]. Engineering Sciences, 2016, 18(2): 19-31. | |
60 | Zheng J S, Chen B, Thanyamanta W, et al. Offshore produced water management: a review of current practice and challenges in harsh/Arctic environments[J]. Marine Pollution Bulletin, 2016, 104(1/2): 7-19. |
61 | Igunnu E T, Chen G Z. Produced water treatment technologies[J]. International Journal of Low-Carbon Technologies, 2014, 9(3): 157-177. |
62 | Fakhru’l-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
63 | Multon L M, Viraraghavan T. Removal of oil from produced water by coalescence/filtration in a granular bed[J]. Environmental Technology, 2006, 27(5): 529-544. |
64 | Kharoua N, Khezzar L, Nemouchi Z. Hydrocyclones for de-oiling applications—a review[J]. Petroleum Science and Technology, 2010, 28(7): 738-755. |
65 | Anlauf H. Recent developments in centrifuge technology[J]. Separation and Purification Technology, 2007, 58(2): 242-246. |
66 | Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. |
67 | Srinivasan A, Viraraghavan T. Removal of oil by walnut shell media[J]. Bioresource Technology, 2008, 99(17): 8217-8220. |
68 | Padaki M, Surya Murali R, Abdullah M S, et al. Membrane technology enhancement in oil-water separation. A review[J]. Desalination, 2015, 357: 197-207. |
69 | Weschenfelder S E, Louvisse A M T, Borges C P, et al. Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units[J]. Journal of petroleum Science and Engineering, 2015, 131: 51-57. |
70 | Weschenfelder S E, Fonseca M J C, Borges C P, et al. Application of ceramic membranes for water management in offshore oil production platforms: process design and economics[J]. Separation and Purification Technology, 2016, 171: 214-220. |
71 | Dickhout J M, Moreno J, Biesheuvel P M, et al. Produced water treatment by membranes: a review from a colloidal perspective[J]. Journal of Colloid and Interface Science, 2017, 487: 523-534. |
72 | Adham S, Hussain A, Minier-Matar J, et al. Membrane applications and opportunities for water management in the oil & gas industry[J]. Desalination, 2018, 440: 2-17. |
73 | Lu H, Xu X, Xie L S, et al. Deformation and crawling of oil drop on solid substrates by shearing liquid[J]. Chemical Engineering Science, 2019, 195: 720-729. |
74 | Lu H, Yang Q, Xu X, et al. Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation[J]. Chemical Engineering & Technology, 2016, 39(2): 255-262. |
75 | 张继伟, 王春林, 荣新明. 曹妃甸11-2油田高含水水平井酸化研究与应用[J]. 石油化工高等学校学报, 2018, 31(6): 95-100. |
Zhang J W, Wang C L, Rong X M. Research and application of acidizing technology on high water-cut horizontal well of CFD11-2 oilfield[J]. Journal of Petrochemical Universities, 2018, 31(6): 95-100. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[7] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[12] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[13] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[14] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[15] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||