CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 232-240.DOI: 10.11949/0438-1157.20211097
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Guilin DONG1(),Zuwei LUO2,Yueqiang CAO2(),Jinghong ZHOU2,Wei LI1,Xinggui ZHOU2
Received:
2021-08-09
Revised:
2021-09-16
Online:
2022-01-18
Published:
2022-01-05
Contact:
Yueqiang CAO
董桂霖1(),罗祖伟2,曹约强2(),周静红2,李伟1,周兴贵2
通讯作者:
曹约强
作者简介:
董桂霖(1984—),男,博士研究生,基金资助:
CLC Number:
Guilin DONG, Zuwei LUO, Yueqiang CAO, Jinghong ZHOU, Wei LI, Xinggui ZHOU. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate[J]. CIESC Journal, 2022, 73(1): 232-240.
董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240.
Sample | Ag content①/% | SBET②/(m2·g-1) | Vpore③/(cm3·g-1) | Dpore③/nm | dAg·TEM④/nm | dAg·XRD⑤/nm | D⑥/% | SAg⑥/(m2·g-1) | TOF/h-1 |
---|---|---|---|---|---|---|---|---|---|
Ag/AS_70 | 2.9 | 242 | 0.33 | 6.12 | 5.5±0.9 | nd | 31.7 | 4.46 | 230⑦ |
Ag/AS_75 | 2.6 | 210 | 0.26 | 5.43 | 7.3±1.7 | 6.7 | 19.0 | 2.40 | 179⑧ |
Ag/AS_80 | 2.3 | 162 | 0.21 | 5.27 | 11.4±2.1 | 11.0 | 13.3 | 1.48 | 123⑨ |
Ag/AS_85 | 2.1 | 117 | 0.17 | 5.15 | 20.6±2.8 | 20.4 | 5.7 | 0.58 | 72⑩ |
Table 1 Physicochemical properties of the Ag/AS catalysts
Sample | Ag content①/% | SBET②/(m2·g-1) | Vpore③/(cm3·g-1) | Dpore③/nm | dAg·TEM④/nm | dAg·XRD⑤/nm | D⑥/% | SAg⑥/(m2·g-1) | TOF/h-1 |
---|---|---|---|---|---|---|---|---|---|
Ag/AS_70 | 2.9 | 242 | 0.33 | 6.12 | 5.5±0.9 | nd | 31.7 | 4.46 | 230⑦ |
Ag/AS_75 | 2.6 | 210 | 0.26 | 5.43 | 7.3±1.7 | 6.7 | 19.0 | 2.40 | 179⑧ |
Ag/AS_80 | 2.3 | 162 | 0.21 | 5.27 | 11.4±2.1 | 11.0 | 13.3 | 1.48 | 123⑨ |
Ag/AS_85 | 2.1 | 117 | 0.17 | 5.15 | 20.6±2.8 | 20.4 | 5.7 | 0.58 | 72⑩ |
1 | 王登豪, 张传彩, 朱明远, 等. 高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用[J]. 化工学报, 2017, 68(7): 2739-2745. |
Wang D H, Zhang C C, Zhu M Y, et al. Efficient and stable hydrogenation of dimethyl oxalate via copper-nickel catalysts[J]. CIESC Journal, 2017, 68(7): 2739-2745. | |
2 | Sun Y, Wang H, Shen J H, et al. Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts[J]. Catalysis Communications, 2009, 10(5): 678-681. |
3 | Lee K Y, Bouhadir K H, Mooney D J. Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels[J]. Macromolecules, 2000, 33(1): 97-101. |
4 | Yue H R, Zhao Y J, Ma X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
5 | Xu Q. Metal carbonyl cations: generation, characterization and catalytic application[J]. Coordination Chemistry Reviews, 2002, 231(1/2): 83-108. |
6 | 王克冰, 姚洁, 雷永诚, 等. 硫酸氢钠催化甲醛与甲酸甲酯的偶联反应[J]. 化工学报, 2007, 58(4): 897-902. |
Wang K B, Yao J, Lei Y C, et al. Coupling reaction of formaldehyde and methyl formate over sodium bisulfate catalyst[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 897-902. | |
7 | 龚海燕. Cu/SiO2催化草酸二甲酯加氢制乙醇酸甲酯的反应性能[J]. 化学反应工程与工艺, 2014, 30(2): 169-174. |
Gong H Y. Hydrogenation of dimethyl oxalate to methyl glycolate on Cu/SiO2 catalyst[J]. Chemical Reaction Engineering and Technology, 2014, 30(2): 169-174. | |
8 | 穆仕芳, 尚如静, 魏灵朝, 等. 草酸二甲酯选择性加氢非硅基催化体系分析[J]. 现代化工, 2016, 36(10): 34-37. |
Mu S F, Shang R J, Wei L C, et al. Analysis of non-silica catalytic system for selective hydrogenation of dimethyl oxalate[J]. Modern Chemical Industry, 2016, 36(10): 34-37. | |
9 | Huang W G, He D H, Liu J Y, et al. Catalytic condensation of formaldehyde and methyl formate over 12-tungstosilicic compounds[J]. Applied Catalysis A: General, 2000, 199(1): 93-98. |
10 | Celik F E, Lawrence H, Bell A T. Synthesis of precursors to ethylene glycol from formaldehyde and methyl formate catalyzed by heteropoly acids[J]. Journal of Molecular Catalysis A: Chemical, 2008, 288(1/2): 87-96. |
11 | Zhang L, Han L P, Zhao G F, et al. Structured Pd-Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol[J]. Chemical Communications, 2015, 51(52): 10547-10550. |
12 | Zheng J W, Zhou J F, Lin H Q, et al. CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13758-13766. |
13 | 俞金山, 冯翀, 刘甜甜, 等. 可抑制1, 2-丁二醇生成的高性能草酸二甲酯加氢B-Cu/MS催化剂的研究[J]. 天然气化工(C1化学与化工), 2021, 46(4): 33-40. |
Yu J S, Feng C, Liu T T, et al. Study on high performance B-Cu/MS catalyst for suppressing by-product 1, 2-butanediol in hydrogenation of dimethyl oxalate[J]. Natural Gas Chemical Industry, 2021, 46(4): 33-40. | |
14 | Zhou J F, Duan X P, Ye L M, et al. Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag-Ni/SBA-15 catalysts[J]. Applied Catalysis A: General, 2015, 505: 344-353. |
15 | Li M M J, Ye L M, Zheng J W, et al. Surfactant-free nickel-silver core@shell nanoparticles in mesoporous SBA-15 for chemoselective hydrogenation of dimethyl oxalate[J]. Chemical Communications, 2016, 52(12): 2569-2572. |
16 | 李祥祥, 朱贻安, 周静红, 等. 银和铜催化草酸二甲酯加氢制乙醇酸甲酯反应机理的理论研究[J]. 天然气化工(C1化学与化工), 2018, 43(6): 17-23. |
Li X X, Zhu Y A, Zhou J H, et al. Insights into the reaction mechanism of dimethyl oxalate hydrogenation to methyl glycolate over Ag and Cu catalysts[J]. Natural Gas Chemical Industry, 2018, 43(6): 17-23. | |
17 | Dong G L, Cao Y Q, Zheng S N, et al. Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Journal of Catalysis, 2020, 391: 155-162. |
18 | Hu Y W, Wang N, Zhou Z M. Synergetic effect of Cu active sites and oxygen vacancies in Cu/CeO2-ZrO2 for the water-gas shift reaction[J]. Catalysis Science & Technology, 2021, 11(7): 2518-2528. |
19 | 何璐铭, 辛忠, 高文莉, 等. 静电纺丝法制备高活性多孔Ni/SiO2甲烷化催化剂[J]. 化工学报, 2020, 71(11): 5007-5015. |
He L M, Xin Z, Gao W L, et al. Highly efficient porous Ni/SiO2 catalysts prepared by electrospinning method for CO methanation[J]. CIESC Journal, 2020, 71(11): 5007-5015. | |
20 | Zheng J W, Lin H Q, Wang Y N, et al. Efficient low-temperature selective hydrogenation of esters on bimetallic Au-Ag/SBA-15 catalyst[J]. Journal of Catalysis, 2013, 297: 110-118. |
21 | 吴岳峰, 曲永芳, 李大欢, 等. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998. |
Wu Y F, Qu Y F, Li D H, et al. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid[J]. CIESC Journal, 2020, 71(11): 4990-4998. | |
22 | Zheng J W, Lin H Q, Zheng X L, et al. Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation[J]. Catalysis Communications, 2013, 40: 129-133. |
23 | 邓湘玲, 叶松寿, 曹志凯, 等. Ag/Ce0.75Zr0.25O2催化剂中Ag的负载量对碳烟燃烧活性的影响[J]. 化工学报, 2017, 68(8): 3064-3070. |
Deng X L, Ye S S, Cao Z K, et al. Effect of Ag loading on soot oxidation for Ag/Ce0.75Zr0.25O2 catalysts[J]. CIESC Journal, 2017, 68(8): 3064-3070. | |
24 | Chen H M, Tan J J, Cui J L, et al. Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Molecular Catalysis, 2017, 433: 346-353. |
25 | 曹昊苏, 张荣成, 朱长俊, 等. Ag-H2Ti4O9复合材料的制备以及可见光下对甲苯降解的研究[J]. 硅酸盐通报, 2018, 37(11): 3623-3629, 3636. |
Cao H S, Zhang R C, Zhu C J, et al. Preparation of Ag doped H2Ti4O9 and the study on its photocatalytic degradation of toluene under visible light[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3623-3629, 3636. | |
26 | Bergman S L, Ganguly A S, Bernasek S L. XPS characterization of a plasmonic sensor for catalysis studies by controlled differential charging[J]. Journal of Electron Spectroscopy and Related Phenomena, 2018, 222: 88-94. |
27 | Bukhtiyarov V I, Prosvirin I P, Kvon R I, et al. XPS study of the size effect in ethene epoxidation on supported silver catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(13): 2323-2329. |
28 | Chen J Y, Cui P X, Zhao G Q, et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution[J]. Angewandte Chemie International Edition, 2019, 58(36): 12540-12544. |
29 | Hu J, Wu L, Kuttiyiel K A, et al. Increasing stability and activity of core-shell catalysts by preferential segregation of oxide on edges and vertexes: oxygen reduction on Ti-Au@Pt/C[J]. Journal of the American Chemical Society, 2016, 138(29): 9294-9300. |
30 | Zhang J Y, Qian J M, Ran J Q, et al. Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions[J]. ACS Catalysis, 2020, 10(21): 12376-12384. |
31 | Zheng J W, Duan X P, Lin H Q, et al. Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate[J]. Nanoscale, 2016, 8(11): 5959-5967. |
32 | Ma X B, Chi H W, Yue H R, et al. Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts[J]. AIChE Journal, 2013, 59(7): 2530-2539. |
33 | Cui G Q, Meng X Y, Zhang X, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
34 | Fleming I. Molecular Orbitals and Organic Chemical Reactions[M]. Chichester, UK: John Wiley & Sons, Ltd., 2010. |
35 | Dong G L, Luo Z W, Cao Y Q, et al. Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts[J]. Journal of Catalysis, 2021, 401: 252-261. |
36 | Hartfelder U, Kartusch C, Makosch M, et al. Particle size and support effects in hydrogenation over supported gold catalysts[J]. Catal. Sci. Technol., 2013, 3(2): 454-461. |
37 | Kasinathan P, Hwang D W, Lee U H, et al. Effect of Cu particle size on hydrogenation of dimethyl succinate over Cu-SiO2 nanocomposite[J]. Catalysis Communications, 2013, 41: 17-20. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[12] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||