CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5172-5182.DOI: 10.11949/0438-1157.20210488
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Meijia LIU1(),Gang WANG1(),Zhongdong ZHANG2(),Shunnian XU1,Hao WANG3,Falu DANG1,Shengbao HE2
Received:
2021-04-08
Revised:
2021-06-02
Online:
2021-10-05
Published:
2021-10-05
Contact:
Gang WANG,Zhongdong ZHANG
刘美佳1(),王刚1(),张忠东2(),许顺年1,王皓3,党法璐1,何盛宝2
通讯作者:
王刚,张忠东
作者简介:
刘美佳(1994—),女,博士研究生,基金资助:
CLC Number:
Meijia LIU,Gang WANG,Zhongdong ZHANG,Shunnian XU,Hao WANG,Falu DANG,Shengbao HE. Analysis of reaction performance of high efficient pyrolysis of C5 alkanes to light olefins[J]. CIESC Journal, 2021, 72(10): 5172-5182.
刘美佳,王刚,张忠东,许顺年,王皓,党法璐,何盛宝. 碳五烷烃裂解制低碳烯烃反应性能的分析[J]. 化工学报, 2021, 72(10): 5172-5182.
Add to citation manager EndNote|Ris|BibTeX
拓扑结构 | 硅铝比 | 比表面积/(m2/g) | 微孔体积/(cm3/g) | 孔径 /nm | 弱酸量/(mmol/g) | 强酸量/(mmol/g) | 总酸量/(mmol/g) |
---|---|---|---|---|---|---|---|
MFI | 120 | 397.520 | 0.141 | 0.520 | 0.116 | 0.102 | 0.218 |
Table 1 Properties of zeolites used in catalytic pyrolysis
拓扑结构 | 硅铝比 | 比表面积/(m2/g) | 微孔体积/(cm3/g) | 孔径 /nm | 弱酸量/(mmol/g) | 强酸量/(mmol/g) | 总酸量/(mmol/g) |
---|---|---|---|---|---|---|---|
MFI | 120 | 397.520 | 0.141 | 0.520 | 0.116 | 0.102 | 0.218 |
碳数 | 原料 | 转化率/% | 甲烷选择性/% | 乙烯选择性/% | 丙烯选择性/% | 丁烯选择性/% | 文献 | |
---|---|---|---|---|---|---|---|---|
热裂解 | C5 | 正戊烷 | 77.90 | 11.94 | 43.13 | 23.88 | 10.14 | [ |
2-甲基丁烷 | 78.20 | 15.47 | 20.72 | 25.06 | 25.83 | |||
C7 | 正庚烷 | 87.80 | 8.09 | 54.44 | 19.70 | 11.16 | [ | |
2-甲基己烷 | 91.50 | 12.02 | 30.27 | 25.25 | 18.36 | |||
3-甲基己烷 | 94.30 | 12.94 | 31.81 | 22.27 | 15.38 | |||
C8 | 正辛烷 | 92.70 | 9.17 | 46.60 | 18.34 | 11.33 | [ | |
3-甲基庚烷 | 94.70 | 10.67 | 38.54 | 20.17 | 15.42 | |||
2,3-二甲基己烷 | 98.60 | 16.02 | 17.65 | 26.88 | 16.53 | |||
催化裂解 | C8 | 正辛烷 | 8.66 | 9.29 | — | — | 52.47 | [ |
3-甲基庚烷 | 7.23 | 23.25 | — | — | 61.36 | |||
2,5-二甲基庚烷 | 6.04 | 33.93 | — | — | 72.34 | |||
C8 | 正辛烷 | 96.66 | — | — | — | 9.22 | [ | |
异辛烷 | 61.15 | — | — | — | 15.14 |
Table 2 Comparison of cracking reaction results of n-alkanes and isoalkanes
碳数 | 原料 | 转化率/% | 甲烷选择性/% | 乙烯选择性/% | 丙烯选择性/% | 丁烯选择性/% | 文献 | |
---|---|---|---|---|---|---|---|---|
热裂解 | C5 | 正戊烷 | 77.90 | 11.94 | 43.13 | 23.88 | 10.14 | [ |
2-甲基丁烷 | 78.20 | 15.47 | 20.72 | 25.06 | 25.83 | |||
C7 | 正庚烷 | 87.80 | 8.09 | 54.44 | 19.70 | 11.16 | [ | |
2-甲基己烷 | 91.50 | 12.02 | 30.27 | 25.25 | 18.36 | |||
3-甲基己烷 | 94.30 | 12.94 | 31.81 | 22.27 | 15.38 | |||
C8 | 正辛烷 | 92.70 | 9.17 | 46.60 | 18.34 | 11.33 | [ | |
3-甲基庚烷 | 94.70 | 10.67 | 38.54 | 20.17 | 15.42 | |||
2,3-二甲基己烷 | 98.60 | 16.02 | 17.65 | 26.88 | 16.53 | |||
催化裂解 | C8 | 正辛烷 | 8.66 | 9.29 | — | — | 52.47 | [ |
3-甲基庚烷 | 7.23 | 23.25 | — | — | 61.36 | |||
2,5-二甲基庚烷 | 6.04 | 33.93 | — | — | 72.34 | |||
C8 | 正辛烷 | 96.66 | — | — | — | 9.22 | [ | |
异辛烷 | 61.15 | — | — | — | 15.14 |
1 | 孙丽丽. 新型炼油厂的技术集成与构建[J]. 石油学报(石油加工), 2020, 36(1): 1-10. |
Sun L L. Technology integration and construction of new refineries[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 1-10. | |
2 | Corma A, Corresa E, Mathieu Y, et al. Crude oil to chemicals: light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
3 | 汪燮卿, 舒兴田. 重质油裂解制轻烯烃[M]. 北京: 中国石化出版社, 2015. |
Wang X Q, Shu X T. Heavy Oil Catalytic Cracking to Olefins[M]. Beijing: China Petrochemical Press, 2015. | |
4 | Wang G, Xu C M, Gao J S. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production[J]. Fuel Processing Technology, 2008, 89(9): 864-873. |
5 | Li C Y, Yang C H, Shan H H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(14): 4914-4920. |
6 | Hou X, Qiu Y, Zhang X W, et al. Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins[J]. Chemical Engineering Journal, 2017, 307: 372-381. |
7 | Thivasasith A, Maihom T, Pengpanich S, et al. Nanocavity effects of various zeolite frameworks on n-pentane cracking to light olefins: combination studies of DFT calculations and experiments[J]. Physical Chemistry Chemical Physics, 2019, 21(40): 22215-22223. |
8 | Zámostný P, Bělohlav Z, Starkbaumová L, et al. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 207-216. |
9 | 张睿, 刘贵丽, 王亚东, 等. 轻烃催化裂解制低碳烯烃反应规律与原料特征化[J]. 化工学报, 2016, 67(8): 3387-3393. |
Zhang R, Liu G L, Wang Y D, et al. Reaction behaviors and feed characterization of light hydrocarbon catalytic pyrolysis for production of light olefins[J]. CIESC Journal, 2016, 67(8): 3387-3393. | |
10 | Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes[J]. Catalysis Reviews, 2001, 43(1/2): 85-146. |
11 | 李福超, 袁起民, 魏晓丽. 烃分子结构对其催化裂解反应性能的影响[J]. 石油学报(石油加工), 2020, 36(4): 661-666. |
Li F C, Yuan Q M, Wei X L. Effects of molecular structure on hydrocarbon catalytic cracking performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(4): 661-666. | |
12 | 魏晓丽, 张久顺, 毛安国, 等. 石脑油催化裂解生成甲烷的影响因素探析[J]. 石油炼制与化工, 2014, 45(3): 1-5. |
Wei X L, Zhang J S, Mao A G, et al. Investigation on influence factors of methane formation in naphtha catalytic cracking[J]. Petroleum Processing and Petrochemicals, 2014, 45(3): 1-5. | |
13 | 李福超, 张久顺, 袁起民. 正辛烷热裂化和催化裂化生成甲烷反应机理[J]. 燃料化学学报, 2014, 42(6): 697-703. |
Li F C, Zhang J S, Yuan Q M. Mechanism of methane formation in thermal and catalytic cracking of n-octane[J]. Journal of Fuel Chemistry and Technology, 2014, 42(6): 697-703. | |
14 | 李福超, 袁起民, 王亚敏, 等. 3-甲基庚烷热裂化和催化裂化甲烷生成机理[J]. 石油学报(石油加工), 2015, 31(4): 853-860. |
Li F C, Yuan Q M, Wang Y M, et al. Mechanism of methane formation in thermal and catalytic cracking of 3-methylheptane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(4): 853-860. | |
15 | 李福超, 袁起民, 张久顺. 2,5-二甲基己烷热裂化和催化裂化生成甲烷的机理研究[J]. 石油炼制与化工, 2014, 45(12): 1-5. |
Li F C, Yuan Q M, Zhang J S. Study on methane formation in thermal and catalytic cracking of 2,5-dimethylhexane[J]. Petroleum Processing and Petrochemicals, 2014, 45(12): 1-5. | |
16 | Tian Y J, Zhang B F, Liang H R, et al. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins[J]. Applied Catalysis A: General, 2019, 572: 24-33. |
17 | Sundberg J, Standl S, von Aretin T, et al. Optimal process for catalytic cracking of higher olefins on ZSM-5[J]. Chemical Engineering Journal, 2018, 348: 84-94. |
18 | Bortnovsky O, Sazama P, Wichterlova B. Cracking of pentenes to C2—C4 light olefins over zeolites and zeotypes: role of topology and acid site strength and concentration[J]. Applied Catalysis A: General, 2005, 287(2): 203-213. |
19 | Altynkovich E O, Potapenko O V, Sorokina T P, et al. Butane-butylene fraction cracking over modified ZSM-5 zeolite[J]. Petroleum Chemistry, 2017, 57(3): 215-221. |
20 | 马通, 耿祖豹, 李冰, 等. 不同模板制备ZSM-5分子筛的酸性特征及催化裂解性能差异[J]. 化工学报, 2016, 67(8): 3374-3379. |
Ma T, Geng Z B, Li B, et al. Difference of acid characters and catalytic cracking performance between ZSM-5 zeolites synthesized with various templates[J]. CIESC Journal, 2016, 67(8): 3374-3379. | |
21 | Potapenko O V, Doronin V P, Sorokina T P, et al. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Applied Catalysis A: General, 2016, 516: 153-159. |
22 | 刘美佳, 王刚, 张忠东, 等. C5烃催化裂解过程中氢转移反应的研究[J]. 燃料化学学报, 2021, 49(1): 104-112. |
Liu M J, Wang G, Zhang Z D, et al. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 104-112. | |
23 | Corma A, González-Alfaro V, Orchillés A V. The role of pore topology on the behaviour of FCC zeolite additives [J]. Applied Catalysis: A General, 1999, 187(2): 245-254. |
24 | Hou X, Ni N, Wang Y, et al. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 270-280. |
25 | Zhang R, Wang Z X, Liu H Y, et al. Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis[J]. Applied Catalysis A: General, 2016, 522: 165-171. |
26 | Fu J, Feng X, Liu Y B, et al. Effect of pore confinement on the adsorption of mono-branched alkanes of naphtha in ZSM-5 and Y zeolites[J]. Applied Surface Science, 2017, 423: 131-138. |
27 | Haag W O, Dessau R M, Lago R M. Kinetics and mechanism of paraffin cracking with zeolite catalysts[J]. Studies in Surface Science and Catalysis, 1991, 60: 255-265. |
28 | Krannila H, Haag W O, Gates B C. Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5[J]. Journal of Catalysis, 1992, 135(1): 115-124. |
29 | Kubo K, Iida H, Namba S, et al. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures[J]. Microporous and Mesoporous Materials, 2012, 149(1): 126-133. |
30 | 罗渝然. 化学键能数据手册[M]. 北京: 科学出版社, 2005. |
Luo Y R. Handbook of Bond Dissociation Energies[M]. Beijing: Science Press, 2005. |
[1] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[4] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[7] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[8] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[9] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[10] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[11] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[12] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[13] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[14] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[15] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||