CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 792-800.DOI: 10.11949/0438-1157.20211281
• Process system engineering • Previous Articles Next Articles
Peng WEI(),Jun CHEN(),Zhiguo WANG,Fei LIU
Received:
2021-09-03
Revised:
2021-10-30
Online:
2022-02-18
Published:
2022-02-05
Contact:
Jun CHEN
通讯作者:
陈珺
作者简介:
魏朋(1995—),男,硕士研究生,基金资助:
CLC Number:
Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Robust optimization of process parameters of simulated moving bed based on equilibrium theory[J]. CIESC Journal, 2022, 73(2): 792-800.
魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800.
Add to citation manager EndNote|Ris|BibTeX
模型参数 | 工艺参数 | ||
---|---|---|---|
柱分布结构 | 2-2-2-2 | A的进料浓度 | 0.5 g/ml |
组分数 | 2 | B的进料浓度 | 0.5 g/ml |
柱长 | 53.6 cm | 进料液流量 | 0.0200 ml/s |
柱直径 | 2.6 cm | 洗脱液流量 | 0.0414 ml/s |
空隙率 | 0.38 | 提取液流量 | 0.0348 ml/s |
轴向扩散系数 | 0.0381 cm2/s | 提余液流量 | 0.0266 ml/s |
A的Henry系数 | 0.54 | 循环液流量 | 0.0981 ml/s |
B的Henry系数 | 0.28 | 切换时间 | 1552 s |
Table 1 Model parameters and process parameters of simulated moving bed
模型参数 | 工艺参数 | ||
---|---|---|---|
柱分布结构 | 2-2-2-2 | A的进料浓度 | 0.5 g/ml |
组分数 | 2 | B的进料浓度 | 0.5 g/ml |
柱长 | 53.6 cm | 进料液流量 | 0.0200 ml/s |
柱直径 | 2.6 cm | 洗脱液流量 | 0.0414 ml/s |
空隙率 | 0.38 | 提取液流量 | 0.0348 ml/s |
轴向扩散系数 | 0.0381 cm2/s | 提余液流量 | 0.0266 ml/s |
A的Henry系数 | 0.54 | 循环液流量 | 0.0981 ml/s |
B的Henry系数 | 0.28 | 切换时间 | 1552 s |
Fig.7 The product purity and recovery rate obtained by running 300 sets of normal distribution values ??(L,ε) generated under the random disturbance action under the initial process parameters
Fig.10 The product purity and recovery rate obtained by running 300 sets of normal distribution values (L,ε) generated under the random disturbance action under the robust process parameters
1 | 刘斌杰. 模拟移动床分离红霉素A和红霉素C的研究[D]. 上海: 华东理工大学, 2019. |
Liu B J. Separation of erythromycin A and erythromycin C by simulated moving bed process[D]. Shanghai: East China University of Science and Technology, 2019. | |
2 | Broughton D, Gerhold C. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US2985589[P]. 1961. |
3 | 胡蓉. 二甲苯吸附分离过程建模与优化[D]. 上海: 华东理工大学, 2015. |
Hu R. Modeling and optimization of xylene adsorption separation process[D]. Shanghai: East China University of Science and Technology, 2015. | |
4 | Aniceto J P S, Silva C M. Simulated moving bed strategies and designs: from established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
5 | Kim K M, Han K W, Kim S I, et al. Simulated moving bed with a product column for improving the separation performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 328-338. |
6 | Klatt K U, Hanisch F, Dünnebier G. Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose[J]. Journal of Process Control, 2002, 12(2): 203-219. |
7 | Lee J, Shin N C, Lim Y, et al. Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation[J]. Korean Journal of Chemical Engineering, 2010, 27(2): 609-618. |
8 | van Duc Long N, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995. |
9 | Ribeiro A E, Gomes P S, Pais L S, et al. Chiral separation of ketoprofen enantiomers by preparative and simulated moving bed chromatography[J]. Separation Science and Technology, 2011, 46(11): 1726-1739. |
10 | Li Y, Yu W F, Ding Z Y, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367. |
11 | Sulaymon A H, Abid B A, Al-Najar J A. Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers[J]. Chemical Engineering Journal, 2009, 155(3): 647-653. |
12 | Li Y, Ding Z Y, Wang J, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
13 | Shen Y H, Fu Q, Zhang D H, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191: 48-60. |
14 | Li Y, Xu J, Yu W F, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279. |
15 | Matos J, Faria R P V, Nogueira I B R, et al. Optimization strategies for chiral separation by true moving bed chromatography using particles swarm optimization (PSO) and new parallel PSO variant[J]. Computers & Chemical Engineering, 2019, 123: 344-356. |
16 | 胡蓉, 杨明磊, 钱锋. 基于多目标教学优化算法在二甲苯吸附分离过程优化中的应用[J]. 化工学报, 2015, 66(1): 326-332. |
Hu R, Yang M L, Qian F. Optimization of xylene adsorption separation process based on multi-objective teaching-learning-based optimization algorithm[J]. CIESC Journal, 2015, 66(1): 326-332. | |
17 | Degerman M, Jakobsson N, Nilsson B. Designing robust preparative purification processes with high performance[J]. Chemical Engineering & Technology, 2008, 31(6): 875-882. |
18 | Borg N, Westerberg K, Andersson N, et al. Effects of uncertainties in experimental conditions on the estimation of adsorption model parameters in preparative chromatography[J]. Computers & Chemical Engineering, 2013, 55: 148-157. |
19 | Nestola P, Silva R J S, Peixoto C, et al. Robust design of adenovirus purification by two-column, simulated moving-bed, size-exclusion chromatography[J]. Journal of Biotechnology, 2015, 213: 109-119. |
20 | Palani S, Gueorguieva L, Rinas U, et al. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography(I): Selection of chromatographic system and estimation of adsorption isotherms[J]. Journal of Chromatography A, 2011, 1218(37): 6396-6401. |
21 | Degerman M, Westerberg K, Nilsson B. A model-based approach to determine the design space of preparative chromatography[J]. Chemical Engineering & Technology, 2009, 32(8): 1195-1202. |
22 | Minceva M, Rodrigues A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461. |
23 | Silva A D, Mariani V C, de Souza A A U, et al. Numerical study of n-pentane separation using adsorption column[J]. Brazilian Archives of Biology and Technology, 2005, 48(s): 267-274. |
24 | Araújo J M M, Rodrigues R C R, Mota J P B. Use of single-column models for efficient computation of the periodic state of a simulated moving-bed process[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5314-5325. |
25 | Cui S X, Gao G, Jiang L J, et al. Non-matching grid interface treatment for the space-time conservation element and solution element method[J]. Procedia Engineering, 2012, 31: 1115-1124. |
26 | Arora S, Dhaliwal S S, Kukreja V K. Solution of two point boundary value problems using orthogonal collocation on finite elements[J]. Applied Mathematics and Computation, 2005, 171(1): 358-370. |
27 | Arora S, Dhaliwal S S, Kukreja V K. Simulation of washing of packed bed of porous particles by orthogonal collocation on finite elements[J]. Computers & Chemical Engineering, 2006, 30(6/7): 1054-1060. |
28 | Storti G, Mazzotti M, Morbidelli M, et al. Robust design of binary countercurrent adsorption separation processes[J]. AIChE Journal, 1993, 39(3): 471-492. |
29 | Beyer P L, Caviar E M, McCallum R W. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults[J]. Journal of the American Dietetic Association, 2005, 105(10): 1559-1566. |
30 | Katsuo S, Mazzotti M. Intermittent simulated moving bed chromatography(Ⅱ): Separation of Tröger's base enantiomers[J]. Journal of Chromatography A, 2010, 1217(18): 3067-3075. |
31 | 沈圆辉. 对二甲苯模拟移动床分离过程的模拟与优化[D]. 天津: 天津大学, 2016. |
Shen Y H. Simulation and optimization of simulated moving bed process for p-xylene separation[D]. Tianjin: Tianjin University, 2016. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[11] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[12] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[13] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||