CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 308-321.DOI: 10.11949/0438-1157.20211103
• Separation engineering • Previous Articles Next Articles
Chao ZHANG1(),Jian CHEN2,Wenhua YIN2,Yuanhui SHEN1,Zhaoyang NIU1,Xiuxin YU1,Donghui ZHANG1(),Zhongli TANG1
Received:
2021-08-09
Revised:
2021-11-23
Online:
2022-01-18
Published:
2022-01-05
Contact:
Donghui ZHANG
张超1(),陈健2,殷文华2,沈圆辉1,钮朝阳1,余秀鑫1,张东辉1(),唐忠利1
通讯作者:
张东辉
作者简介:
张超(1998—),男,硕士研究生,基金资助:
CLC Number:
Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process[J]. CIESC Journal, 2022, 73(1): 308-321.
张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 | 塔7 | 塔8 |
---|---|---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 |
40 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 |
40 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 |
40 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 |
40 | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD |
40 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 |
40 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 |
40 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 |
40 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 |
40 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 |
40 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 |
40 | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR |
40 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 |
40 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 |
Table 1 The schedule of eight-bed PSA
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 | 塔7 | 塔8 |
---|---|---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 |
40 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 |
40 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 |
40 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 |
40 | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD |
40 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 |
40 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 |
40 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 |
40 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 |
40 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 |
40 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 |
40 | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR |
40 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 |
40 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 |
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
Ergun方程 | (7) | |
LDF方程 | (8) | |
吸附等温式 | (9) |
Table 2 Mathematical model of adsorption bed
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
Ergun方程 | (7) | |
LDF方程 | (8) | |
吸附等温式 | (9) |
指标 | 数学模型 | |
---|---|---|
纯度 | (10) | |
回收率 | recovery | (11) |
生产量 | (12) |
Table 3 Process performance indicator
指标 | 数学模型 | |
---|---|---|
纯度 | (10) | |
回收率 | recovery | (11) |
生产量 | (12) |
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
ρb /(kg·m-3) | 522.0 | 698.0 |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
εb | 0.433 | 0.357 |
εp | 0.61 | 0.65 |
0.9 | 1.0 | |
kLDF,CH4/s-1 | 0.195 | 0.147 |
kLDF,CO/s-1 | 0.15 | 0.063 |
kLDF,CO2/s-1 | 0.0355 | 0.0135 |
kLDF,H2/s-1 | 0.7 | 0.7 |
kLDF,N2/s-1 | 3.0 | 2.5 |
Table 4 Parameters of activated carbon and 5A zeolite adsorbent
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
ρb /(kg·m-3) | 522.0 | 698.0 |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
εb | 0.433 | 0.357 |
εp | 0.61 | 0.65 |
0.9 | 1.0 | |
kLDF,CH4/s-1 | 0.195 | 0.147 |
kLDF,CO/s-1 | 0.15 | 0.063 |
kLDF,CO2/s-1 | 0.0355 | 0.0135 |
kLDF,H2/s-1 | 0.7 | 0.7 |
kLDF,N2/s-1 | 3.0 | 2.5 |
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
Table 5 Parameters of adsorption bed
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
组分 | T/K | 活性炭 | 5A 分子筛 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | |||
H2 | 298.15 | 3.85 | 5.48×10-5 | 0.9996 | -12.84 | 0.76 | 7.70×10-4 | 0.9995 | -9.23 | |
308.15 | 4.32 | 5.12×10-5 | 0.9997 | 0.67 | 8.57×10-4 | 0.9996 | ||||
318.15 | 2.21 | 1.06×10-4 | 0.9994 | 0.65 | 8.47×10-4 | 0.9997 | ||||
CO | 298.15 | 6.72 | 9.10×10-6 | 0.9998 | -22.58 | 2.24 | 6.14×10-6 | 0.9991 | -29.77 | |
308.15 | 6.22 | 9.13×10-6 | 0.9998 | 2.20 | 6.58×10-6 | 0.9993 | ||||
318.15 | 5.50 | 9.68×10-6 | 0.9997 | 2.27 | 6.14×10-6 | 0.9997 | ||||
CO2 | 298.15 | 7.96 | 2.52×10-6 | 1.0000 | -29.08 | 4.35 | 7.60×10-6 | 0.9990 | -35.97 | |
308.15 | 7.32 | 3.20×10-6 | 0.9998 | 4.14 | 9.74×10-6 | 0.9982 | ||||
318.15 | 6.59 | 4.17×10-6 | 1.0000 | 3.96 | 9.12×10-6 | 0.9956 | ||||
CH4 | 298.15 | 7.21 | 1.73×10-5 | 0.9999 | -22.70 | 3.73 | 5.91×10-5 | 0.9996 | -20.64 | |
308.15 | 6.75 | 1.98×10-5 | 0.9998 | 3.54 | 5.37×10-5 | 1.0000 | ||||
318.15 | 6.14 | 2.38×10-5 | 0.9998 | 3.63 | 5.12×10-5 | 1.0000 | ||||
N2 | 298.15 | 3.48 | 1.87×10-4 | 1.0000 | -15.99 | 2.75 | 3.98×10-5 | 0.9999 | -20.65 | |
308.15 | 3.38 | 1.94×10-4 | 0.9997 | 2.67 | 4.16×10-5 | 0.9997 | ||||
318.15 | 3.30 | 2.01×10-4 | 0.9998 | 2.59 | 4.33×10-5 | 1.0000 |
Table 6 Extended Langmuir adsorption model fitting parameters
组分 | T/K | 活性炭 | 5A 分子筛 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | |||
H2 | 298.15 | 3.85 | 5.48×10-5 | 0.9996 | -12.84 | 0.76 | 7.70×10-4 | 0.9995 | -9.23 | |
308.15 | 4.32 | 5.12×10-5 | 0.9997 | 0.67 | 8.57×10-4 | 0.9996 | ||||
318.15 | 2.21 | 1.06×10-4 | 0.9994 | 0.65 | 8.47×10-4 | 0.9997 | ||||
CO | 298.15 | 6.72 | 9.10×10-6 | 0.9998 | -22.58 | 2.24 | 6.14×10-6 | 0.9991 | -29.77 | |
308.15 | 6.22 | 9.13×10-6 | 0.9998 | 2.20 | 6.58×10-6 | 0.9993 | ||||
318.15 | 5.50 | 9.68×10-6 | 0.9997 | 2.27 | 6.14×10-6 | 0.9997 | ||||
CO2 | 298.15 | 7.96 | 2.52×10-6 | 1.0000 | -29.08 | 4.35 | 7.60×10-6 | 0.9990 | -35.97 | |
308.15 | 7.32 | 3.20×10-6 | 0.9998 | 4.14 | 9.74×10-6 | 0.9982 | ||||
318.15 | 6.59 | 4.17×10-6 | 1.0000 | 3.96 | 9.12×10-6 | 0.9956 | ||||
CH4 | 298.15 | 7.21 | 1.73×10-5 | 0.9999 | -22.70 | 3.73 | 5.91×10-5 | 0.9996 | -20.64 | |
308.15 | 6.75 | 1.98×10-5 | 0.9998 | 3.54 | 5.37×10-5 | 1.0000 | ||||
318.15 | 6.14 | 2.38×10-5 | 0.9998 | 3.63 | 5.12×10-5 | 1.0000 | ||||
N2 | 298.15 | 3.48 | 1.87×10-4 | 1.0000 | -15.99 | 2.75 | 3.98×10-5 | 0.9999 | -20.65 | |
308.15 | 3.38 | 1.94×10-4 | 0.9997 | 2.67 | 4.16×10-5 | 0.9997 | ||||
318.15 | 3.30 | 2.01×10-4 | 0.9998 | 2.59 | 4.33×10-5 | 1.0000 |
Initial conditions |
---|
Table 7 Initial conditions of adsorption bed
Initial conditions |
---|
Step | z=0 | z=L |
---|---|---|
吸附 (AD1, AD2) | ||
均压降 (ED1, ED2, ED3, ED4) | ||
顺放 (PP1, PP2) | ||
Table 8 The boundary conditions for each step of PSA process
Step | z=0 | z=L |
---|---|---|
吸附 (AD1, AD2) | ||
均压降 (ED1, ED2, ED3, ED4) | ||
顺放 (PP1, PP2) | ||
Fig.10 Temperature distribution, pressure profile within adsorption bed, and desorption gas distribution at the bottom of the bed at cycle steady state
1 | Momirlan M, Veziroglu T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. International Journal of Hydrogen Energy, 2005, 30(7): 795-802. |
2 | Yang S I, Choi D Y, Jang S C, et al. Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas[J]. Adsorption, 2008, 14(4/5): 583-590. |
3 | Delgado J A, Águeda V I, Uguina M A, et al. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15414-15426. |
4 | Zhu X C, Shi Y X, Li S, et al. Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production[J]. Applied Energy, 2018, 229: 1061-1071. |
5 | Ritter J A, Ebner A D. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries[J]. Separation Science and Technology, 2007, 42(6): 1123-1193. |
6 | Sircar S, Kratz W C. Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption[J]. Separation Science and Technology, 1988, 23(14/15): 2397-2415. |
7 | Sircar S, Golden T C. Purification of hydrogen by pressure swing adsorption[J]. Separation Science and Technology, 2000, 35(5): 667-687. |
8 | Brea P, Delgado J A, Águeda V I, et al. Modeling of breakthrough curves of N2, CH4, CO, CO2 and a SMR type off-gas mixture on a fixed bed of BPL activated carbon[J]. Separation and Purification Technology, 2017, 179: 61-71. |
9 | Ribeiro A M, Grande C A, Lopes F V S, et al. Four beds pressure swing adsorption for hydrogen purification: case of humid feed and activated carbon beds[J]. AIChE Journal, 2009, 55(9): 2292-2302. |
10 | Ahn S, You Y W, Lee D G, et al. Layered two- and four-bed PSA processes for H2 recovery from coal gas[J]. Chemical Engineering Science, 2012, 68(1): 413-423. |
11 | Luberti M, Friedrich D, Brandani S, et al. Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture[J]. Adsorption, 2014, 20(2/3): 511-524. |
12 | Moon D K, Lee D G, Lee C H. H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process[J]. Applied Energy, 2016, 183: 760-774. |
13 | Golmakani A, Fatemi S, Tamnanloo J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification[J]. Separation and Purification Technology, 2017, 176: 73-91. |
14 | Moon D K, Park Y, Oh H T, et al. Performance analysis of an eight-layered bed PSA process for H2 recovery from IGCC with pre-combustion carbon capture[J]. Energy Conversion and Management, 2018, 156: 202-214. |
15 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
16 | Park Y, Kang J H, Moon D K, et al. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture[J]. Chemical Engineering Journal, 2021, 408: 127299. |
17 | Divekar S, Arya A, Hanif A, et al. Recovery of hydrogen and carbon dioxide from hydrogen PSA tail gas by vacuum swing adsorption[J]. Separation and Purification Technology, 2021, 254: 117113. |
18 | Majlan E H, Daud W R W, Iyuke S E, et al. Hydrogen purification using compact pressure swing adsorption system for fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2771-2777. |
19 | Lopes F V S, Grande C A, Rodrigues A E. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance[J]. Chemical Engineering Science, 2011, 66(3): 303-317. |
20 | Abdeljaoued A, Relvas F, Mendes A, et al. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 338-355. |
21 | Zhang N N, Xiao J S, Bénard P, et al. Single-and double-bed pressure swing adsorption processes for H2/CO syngas separation[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26405-26418. |
22 | Li H R, Liao Z W, Sun J Y, et al. Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1870-1878. |
23 | Yáñez M, Relvas F, Ortiz A, et al. PSA purification of waste hydrogen from ammonia plants to fuel cell grade[J]. Separation and Purification Technology, 2020, 240: 116334. |
24 | You Y W, Lee D G, Yoon K Y, et al. H2 PSA purifier for CO removal from hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18175-18186. |
25 | Golmakani A, Nabavi S A, Manović V. Effect of impurities on ultra-pure hydrogen production by pressure vacuum swing adsorption[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 278-289. |
26 | Liu Z, Grande C A, Li P, et al. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas[J]. Separation and Purification Technology, 2011, 81(3): 307-317. |
27 | Yang H W, Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134: 232-240. |
28 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
29 | Tang X, Wang Z F, Ripepi N, et al. Adsorption affinity of different types of coal: mean isosteric heat of adsorption[J]. Energy & Fuels, 2015, 29(6): 3609-3615. |
30 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[11] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[12] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[15] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 654
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||