CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1270-1279.DOI: 10.11949/0438-1157.20211291
• Process system engineering • Previous Articles Next Articles
Shunhua LUO1(),Zhenlei WANG1(),Xin WANG2
Received:
2021-09-05
Revised:
2021-11-09
Online:
2022-03-14
Published:
2022-03-15
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:
罗顺桦(1997—),男,硕士研究生,基金资助:
CLC Number:
Shunhua LUO, Zhenlei WANG, Xin WANG. Semi-supervised soft sensor modeling based on two-subspace co-training algorithm[J]. CIESC Journal, 2022, 73(3): 1270-1279.
罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模[J]. 化工学报, 2022, 73(3): 1270-1279.
Add to citation manager EndNote|Ris|BibTeX
算法流程: 基于二子空间协同训练模型TSCO-KNN |
---|
输入: 有标签数据集 流程: 使用二子空间TS把数据集 (a) 对数据集 (b) 使用PCA降维得到PCS和RS (c) 计算各辅助变量与PCS和RS的相关性系数 (d) 分别计算 (e) 通过与阈值的比较划分出 (f) 取 While ( { 对于每一个无标签数据 If ( {取最大的 Else { End 得到最终模型,并进行预测 |
Table 1 Algorithm based on two-subspace collaborative training model TSCO-KNN
算法流程: 基于二子空间协同训练模型TSCO-KNN |
---|
输入: 有标签数据集 流程: 使用二子空间TS把数据集 (a) 对数据集 (b) 使用PCA降维得到PCS和RS (c) 计算各辅助变量与PCS和RS的相关性系数 (d) 分别计算 (e) 通过与阈值的比较划分出 (f) 取 While ( { 对于每一个无标签数据 If ( {取最大的 Else { End 得到最终模型,并进行预测 |
成分 | 模型 | RMSE | MSE | MAE |
---|---|---|---|---|
D | co-traning KNN(1) | 1.0488 | 1.1000 | 0.8400 |
co-traning KNN(2) | 1.0003 | 1.0006 | 0.8107 | |
TSCO-KNN | 0.6474 | 0.4191 | 0.5264 | |
E | co-traning KNN(1) | 1.0566 | 1.1164 | 0.8517 |
co-traning KNN(2) | 1.0200 | 1.0404 | 0.8289 | |
TSCO-KNN | 0.6829 | 0.4664 | 0.5469 | |
F | co-traning KNN(1) | 1.1072 | 1.2259 | 0.8725 |
co-traning KNN(2) | 1.0424 | 1.0866 | 0.8300 | |
TSCO-KNN | 0.6695 | 0.4482 | 0.5228 |
Table 2 Evaluation (TE) of the three models with a label ratio of 50%
成分 | 模型 | RMSE | MSE | MAE |
---|---|---|---|---|
D | co-traning KNN(1) | 1.0488 | 1.1000 | 0.8400 |
co-traning KNN(2) | 1.0003 | 1.0006 | 0.8107 | |
TSCO-KNN | 0.6474 | 0.4191 | 0.5264 | |
E | co-traning KNN(1) | 1.0566 | 1.1164 | 0.8517 |
co-traning KNN(2) | 1.0200 | 1.0404 | 0.8289 | |
TSCO-KNN | 0.6829 | 0.4664 | 0.5469 | |
F | co-traning KNN(1) | 1.1072 | 1.2259 | 0.8725 |
co-traning KNN(2) | 1.0424 | 1.0866 | 0.8300 | |
TSCO-KNN | 0.6695 | 0.4482 | 0.5228 |
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1832 | 0.0336 | 0.1333 |
co-traning KNN(2) | 0.1374 | 0.0189 | 0.1013 |
TSCO-KNN | 0.1108 | 0.0123 | 0.0858 |
Table 3 Evaluation of the three models with a label ratio of 10%
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1832 | 0.0336 | 0.1333 |
co-traning KNN(2) | 0.1374 | 0.0189 | 0.1013 |
TSCO-KNN | 0.1108 | 0.0123 | 0.0858 |
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1584 | 0.0251 | 0.1134 |
co-traning KNN(2) | 0.1213 | 0.0147 | 0.0901 |
TSCO-KNN | 0.0857 | 0.0074 | 0.0667 |
Table 4 Evaluation of the three models with a label ratio of 20%
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1584 | 0.0251 | 0.1134 |
co-traning KNN(2) | 0.1213 | 0.0147 | 0.0901 |
TSCO-KNN | 0.0857 | 0.0074 | 0.0667 |
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1369 | 0.0187 | 0.0987 |
co-traning KNN(2) | 0.1010 | 0.0102 | 0.0740 |
TSCO-KNN | 0.0647 | 0.0042 | 0.0499 |
Table 5 Evaluation of the three models with a label ratio of 50%
Model | RMSE | MSE | MAE |
---|---|---|---|
co-traning KNN(1) | 0.1369 | 0.0187 | 0.0987 |
co-traning KNN(2) | 0.1010 | 0.0102 | 0.0740 |
TSCO-KNN | 0.0647 | 0.0042 | 0.0499 |
1 | 俞金寿. 软测量技术及其应用[J]. 自动化仪表, 2008, 29(1): 1-7. |
Yu J S. Soft sensing technology and its application[J]. Process Automation Instrumentation, 2008, 29(1): 1-7. | |
2 | 邱禹, 刘乙奇, 吴菁, 等. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018, 69(7): 3101-3113. |
Qiu Y, Liu Y Q, Wu J, et al. A self-adaptive multi-output soft sensor modeling based on deep neural network[J]. CIESC Journal, 2018, 69(7): 3101-3113. | |
3 | Sarkar P, Gupta S K. Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors[J]. Polymer Engineering & Science, 1992, 32(11): 732-742. |
4 | 姚科田, 邵之江, 陈曦, 等. 基于数据驱动技术和工艺机理模型的PTA生产过程软测量建模方法[J]. 计算机与应用化学, 2010, 27(10): 1329-1332. |
Yao K T, Shao Z J, Chen X, et al. Data-driven technology and mechanism model based soft sensor modeling in PTA process[J]. Computers and Applied Chemistry, 2010, 27(10): 1329-1332. | |
5 | 朱鹏飞, 夏陆岳, 潘海天. 基于改进Kalman滤波算法的多模型融合建模方法[J]. 化工学报, 2015, 66(4): 1388-1394. |
Zhu P F, Xia L Y, Pan H T. Multi-model fusion modeling method based on improved Kalman filtering algorithm[J]. CIESC Journal, 2015, 66(4): 1388-1394. | |
6 | Da-Zhi E, Pan F, Chen D L, et al. Fuzzy neural network control for nonlinear networked control system[C]//2009 Chinese Control and Decision Conference. Guilin: IEEE, 2009: 1569-1573. |
7 | 谢代梁, 王保良, 黄志尧, 等. 主成分回归在中药过程软测量中的应用研究[J]. 仪器仪表学报, 2004, 25(S2): 671-672. |
Xie D L, Wang B L, Huang Z Y, et al. Application of principle component regression to soft-sensing of Chinese traditional medicine production process[J]. Chinese Journal of Scientific Instrument, 2004, 25(S2): 671-672. | |
8 | Zhao C, Chen Z Q, Chen X Y. A soft sensor modeling for aromatics yield based on adaptive weighted least squares support vector machine[J]. Computers and Applied Chemistry, 2019, 36(3): 255-264. |
9 | 丁续达, 金秀章, 张扬. 基于最小二乘支持向量机的改进型在线NO x 预测模型[J]. 热力发电, 2019, 48(1): 61-67. |
Ding X D, Jin X Z, Zhang Y. An improved online NO x prediction model based on LSSVM[J]. Thermal Power Generation, 2019, 48(1): 61-67. | |
10 | 马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128. |
Ma J, Deng X G, Wang L. Industrial process soft sensor method based on deep learning ensemble support vector machine[J]. CIESC Journal, 2018, 69(3): 1121-1128. | |
11 | Xibilia M G, Latino M, Marinković Z, et al. Soft sensors based on deep neural networks for applications in security and safety[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7869-7876. |
12 | Gaurav K, Kailash S. Dynamic neural network based sensing and controlling a reactive distillation column having inverse response[J]. Theoretical Foundations of Chemical Engineering, 2021, 55(1): 167-179. |
13 | Zhu X J, Goldberg A B. Introduction to semi-supervised learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1): 1-130. |
14 | Zhou Z H, Li M. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems, 2010, 24(3): 415-439. |
15 | 周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115. |
Zhou L, Song Z H, Hou B P, et al. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3): 1109-1115. | |
16 | Li C X, Zhu J, Zhang B. Max-margin deep generative models for (semi -) supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2762-2775. |
17 | Luo J F, Xu H T, Su Z Q. Fault diagnosis method based semi-supervised manifold learning and transductive SVM[C]//2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Shanghai: IEEE, 2017: 710-717. |
18 | Tu E M, Zhang Y Q, Zhu L, et al. A graph-based semi-supervised k nearest-neighbor method for nonlinear manifold distributed data classification[J]. Information Sciences, 2016, 367/368: 673-688. |
19 | Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory-COLT' 98. New York: ACM Press, 1998: 92-100. |
20 | Shahshahani B M, Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1087-1095. |
21 | Pierce D, Cardie C. Limitations of co-training for natural language learning from large datasets[C]//Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing. Pittsburgh, PA, USA, 2001. |
22 | Steedman M, Osborne M, Sarkar A, et al. Bootstrapping statistical parsers from small datasets[C]//Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics-EACL'03. NJ, USA: Association for Computational Linguistics, 2003. |
23 | Zhou Z H, Chen K J, Jiang Y. Exploiting unlabeled data in content-based image retrieval[M]//Machine Learning: ECML 2004. Berlin, Heidelberg: Springer, 2004: 525-536. |
24 | Goldman S, Zhou Y.Enhancing supervised learning with unlabeled data[C]//Proceedings of the 17th International Conference on Machine Learning. Stanford, CA, USA:Stanford University, 2000: 327-334. |
25 | Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541. |
26 | Zhou Z H, Li M.Semi-supervised regression with co-training[C]//Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, UK, 2005: 908-913. |
27 | Bao L, Yuan X F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147: 75-85. |
28 | 李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138. |
Li D, Huang D P, Liu Y Q. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model[J]. CIESC Journal, 2020, 71(5): 2128-2138. | |
29 | 童楚东. 基于特征提取与信息融合的工业过程监测研究[D]. 上海: 华东理工大学, 2015. |
Tong C D. Industrial process monitoring based on feature extraction and information fusion[D]. Shanghai: East China University of Science and Technology, 2015. | |
30 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
[1] | CHEN Zhongsheng, ZHU Meiyu, HE Yanlin, XU Yuan, ZHU Qunxiong. Quantile regression CGAN based virtual samples generation and its applications to process modeling [J]. CIESC Journal, 2021, 72(3): 1529-1538. |
[2] | Xianyi YU, Jianghong WU, Yunhui GAO. Research on refrigerant leakage identification for heat pump system based on PCA-SVM models [J]. CIESC Journal, 2020, 71(7): 3151-3164. |
[3] | Dong LI, Daoping HUANG, Yiqi LIU. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model [J]. CIESC Journal, 2020, 71(5): 2128-2138. |
[4] | SHI Fangyi, WANG Ziyang, LIANG Jun. Fault classification based on semi-supervised dense ladder network [J]. CIESC Journal, 2018, 69(7): 3083-3091. |
[5] | ZHU Xianglin, LING Jing, WANG Bo, HAO Jianhua, DING Yuhan. Soft-sensing modeling of marine protease fermentation process based on improved PSO-RBFNN [J]. CIESC Journal, 2018, 69(3): 1221-1227. |
[6] | CUI Xiaohui, YANG Jian, SHI Hongbo. Quality-related process monitoring approach based on semi-supervised orthogonal factor analysis [J]. CIESC Journal, 2018, 69(12): 5130-5138. |
[7] | QIU Li, LUAN Xiaoli, LIU Fei. A recursive optimization method for batch process trajectories based on similarity of principal components [J]. CIESC Journal, 2017, 68(7): 2859-2865. |
[8] | YI Weilin, TIAN Xuemin, ZHANG Hanyuan. Reconstruction based semi-supervised ELM and its application in fault diagnosis [J]. CIESC Journal, 2017, 68(6): 2447-2454. |
[9] | TAO Yang, WANG Fan, SHI Hongbo, SONG Bing. Principal component selection algorithm based on ReliefF and its application in process monitoring [J]. CIESC Journal, 2017, 68(4): 1525-1532. |
[10] | QI Yongsheng, ZHANG Haili, WANG Lin, GAO Xuejin, LU Chenxi. Fault detection and diagnosis for chillers using MSPCA-KECA [J]. CIESC Journal, 2017, 68(4): 1499-1508. |
[11] | ZHOU Le, SONG Zhihuan, HOU Beiping, FEI Zhengshun. Robust semi-supervised modelling method and its application to fault detection in chemical processes [J]. CIESC Journal, 2017, 68(3): 1109-1115. |
[12] | ZHAO Lijie, WANG Hailong, CHEN Bin. Identification of wastewater operational conditions based on manifold regularization semi-supervised learning [J]. CIESC Journal, 2016, 67(6): 2462-2468. |
[13] | HU Yongbing, GAO Xuejin, LI Yafen, QI Yongsheng, WANG Pu. Subset multiway principal component analysis monitoring for batch process based on affinity propagation clustering [J]. CIESC Journal, 2016, 67(5): 1989-1997. |
[14] | WANG Fan, YANG Yawei, TAN Shuai, SHI Hongbo. Fault detection method based on sparse non-negative matrix factorization [J]. CIESC Journal, 2015, 66(5): 1798-1805. |
[15] | ZHONG Lusheng, HE Dong, GONG Jinhong, ZHANG Yongxian. Fault monitoring of industrial process based on distributed ICA-PCA model [J]. CIESC Journal, 2015, 66(11): 4546-4554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||