[1] |
赵春晖, 王福利, 姚远. 基于时段的间歇过程统计建模在线监测及质量预报[J]. 自动化学报, 2010, 36(3):366-374.ZHAO C H, WANG F L, YAO Y. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3):366-374.
|
[2] |
ALDRICH C, AURET L. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods[M]. London:Springer London, 2013:371.
|
[3] |
蒋丽英, 王树青. 基于MPCA-MDPLS的间歇过程的故障诊断[J]. 化工学报, 2005, 56(3):482-486.JIANG L Y, WANG S Q. Fault diagnosis for batch processes based on MPCA-MDPLS[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3):482-486.
|
[4] |
张成, 李元. 基于统计模量分析间歇过程故障监测方法研究[J]. 仪器仪表学报, 2013, 23(9):2103-2110.ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 23(9):2103-2110.
|
[5] |
GALICIA H J, HE Q P, WANG J. Statistics pattern analysis-fault detection and diagnosis[C]//NICK S. Proceedings of the ISA Automation Week. AL, USA:FOCAPO 2012, 2012:325-330.
|
[6] |
WANG J, HE Q P. Multivariate statistical process monitoring based on statistics pattern analysis[J]. Industrial & Engineering Chemistry Research, 2010, 49(17):7858-7869.
|
[7] |
GAO X, HOU J. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process[J]. Neurocomputing, 2016, 174:906-911.
|
[8] |
梁晴晴, 韩华, 崔晓钰. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3):1023-1031.LIANG Q Q, HAN H, CUI X Y. Fault diagnosis for refrigeration system based on PCA-PNN[J]. CIESC Journal, 2016, 67(3):1023-1031.
|
[9] |
DING S X. Data-driven design of monitoring and diagnosis systems for dynamic processes:a review of subspace technique based schemes and some recent results[J]. Journal of Process Control, 2014, 24:431-449.
|
[10] |
YAN K, SHEN W, MULUMBA T, et al. ARX model based fault detection and diagnosis for chillers using support vector machines[J]. Energy and Buildings, 2014, (81):287-295.
|
[11] |
KARIMI I, SALAHSHOOR K. A new fault detection and diagnosis approach for a distillation column system based on a combined PCA and ANFIS scheme[J]. IEEE Conference on Cybernetics & Intelligent Systems, 2012, 34(1):13-21.
|
[12] |
HONG J J, ZHANG J. Progressive PCA modeling for enhanced fault diagnosis in a batch process[C]//IEEE. International Conference on Control, Automation and Systems 2010. United States:IEEE Computer Society, 2010:713-718.
|
[13] |
XIE S K, LAWNIZAK A T, LIO' P, et al. Feature extraction by multi-scale principal component analysis and classification in spectral domain[J]. Engineering, 2013, 5:268-271.
|
[14] |
WANG D, ROMAGNOLI J A. Robust multi-scale principal components analysis with applications to process monitoring[J]. Journal of Process Control, 2005, 15:869-882.
|
[15] |
JENSSEN R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):847-860.
|
[16] |
JIANG Q C, YAN X F, LÜ Z M, et al. Fault detection in nonlinear chemical process based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186.
|
[17] |
SHI J, JIANG Q K, ZHANG Q, et al. Sparse kernel entropy component analysis for dimensionality reduction of biomedical data[J]. Neurocomputing, 2015, 168:930-940.
|
[18] |
GÓMEZ-CHOVA L, JENSSEN R, CAMPS-VALLS G. Kernel entropy component analysis for remote sensing image clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):312-316.
|
[19] |
LIU X, WU X J. ECA and 2DECA:Entropy contribution based methods for face recognition inspired by KECA[C]//IEEE. 2011 International Conference of Soft Computing and Pattern Recognition. United States:IEEE Computer Society, 2011:544-549.
|
[20] |
YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147:395-402.
|
[21] |
JIA X M, MENG Q H, JING Y Q, et al. A new method combining KECA-LDA with ELM for classification of Chinese liquors using electronic nose[J]. IEEE Sensors Journal, 2016, 16(22):8010-8017.
|
[22] |
SHI J, JIANG Q, MAO R, et al. FR-KECA:fuzzy robust kernel entropy component analysis[J]. Neurocomputing, 2015, 149:1415-1423.
|
[23] |
YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5):395-402.
|
[24] |
JIANG Q C, YAN X F, LÜ Z M, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186.
|
[25] |
YANG Y H, LI H Q, LI C L, et al. Kernel entropy component analysis based process monitoring method with process subsystem division[C]//IEEE. 201527th Chinese Control and Decision Conference. USA:IEEE, 2015:2730-2734.
|
[26] |
JENSSEN R, ELTOFT T. A new information theoretic analysis of sum-of-squared-error kernel clustering[J]. Neurocomputing, 2008, 72(1/2/3):23-32.
|
[27] |
JENSSEN R, PRINCIPE J, ERDOGMUSD, et al. The Cauchy-Schwarz divergence and Parzen windowing:connections to graph theory and Mercer kernel[J]. Journal of the Franklin Institute, 2006, 343(6):614-629.
|
[28] |
李冠男, 胡云鹏, 陈焕新, 等. 基于SVDD的冷水机组传感器故障检测及效率分析[J]. 化工学报, 2015, 66(5):1815-1820.LI G N, HU Y P, CHEN H X, et al. SVDD-based chiller sensor fault detection method and its detection efficiency[J]. CIESC Journal, 2015, 66(5):1815-1820.
|
[29] |
谢磊, 刘雪芹, 张建明, 等. 基于NGPP-SVDD的非高斯过程监控及其应用研究[J]. 自动化学报, 2009, 35(1):107-112.XIE L, LIU X Q, ZHANG J M, et al. Non-Gaussian process monitoring based on NGPP-SVDD[J]. Acta Auomatica Sinica, 2009, 35(1):107-112.
|
[30] |
COMSTOCK M C, AUN J E. Development and validation of a mechanistic, dynamic model for a vapor compression centrifugal liquid chiller[D]. USA:ASHRAE, 2002.ting, 2015, 147:395-402.
|
[21] |
JIA X M,MENG Q H,JING Y Q,et al. A New Method Combining KECA-LDA With ELM for Classification of Chinese Liquors Using Electronic Nose[J].IEEE Sensors Journal,2016,16(22):8010-8017.
|
[22] |
SHI J, JIANG Q, MAO R, et al. FR-KECA:Fuzzy robust kernel entropy component analysis[J].Neurocomputing,2015,149:1415-1423.
|
[23] |
YANG Y H, LI X L, LIU X Z,et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5):395-402.
|
[24] |
JIANG Q C,YAN X F, LV Z M,et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and ngular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186.
|
[25] |
YANG Y H,LI H Q,LI C L,et al. Kernel Entropy Component Analysis Based Process Monitoring Method with Process Subsystem Division[C]//IEEE.201527th Chinese Control and Decision Conference.USA:IEEE,2015:2730-2734.
|
[26] |
JENSSEN R, ELTOFT T. A New Information Theoretic Analysis of Sum-of-Squared-Error Kernel Clustering[J]. Neurocomputing, 2008, 72(1/2/3):23-32.
|
[27] |
JENSSEN R,PRINCIPE J,ERDOGMUSD, et al. The Cauchy-Schwarz Divergence and Parzen Windowing:Connections to Graph Theory and Mercer Kernel[J]. Journal of the Franklin Institute, 2006, 343(6):614-629.
|
[28] |
李冠男,胡云鹏,陈焕新等. 基于SVDD的冷水机组传感器故障检测及效率分析[J].化工学报, 2015,66(5):1815-1820. LI G N, HU Y P,CHEN H X, et al.SVDD-based chiller sensor fault detection method and its detection efficiency[J].CIESC Journal, 2015,66(5):1815-1820.
|
[29] |
谢磊,刘雪芹,张建明等. 基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报, 2009,35(1):107-112. XIE L,LIU X Q,ZHANG J M, et al. Non-Gaussian process monitoring based on NGPP-SVDD[J]. ACTA AUOMATICA SINICA, 2009, 35(1):107-112.
|
[30] |
COMSTOCK M C, BRAUN J E. Development And Validation Of A Mechanistic, Dynamic Model For A Vapor Compression Centrifugal Liquid Chiller[D].USA:ASHRAE,2002.
|