CIESC Journal ›› 2017, Vol. 68 ›› Issue (4): 1499-1508.DOI: 10.11949/j.issn.0438-1157.20161239
Previous Articles Next Articles
QI Yongsheng1, ZHANG Haili1, WANG Lin1, GAO Xuejin2, LU Chenxi1
Received:
2016-09-05
Revised:
2016-12-19
Online:
2017-04-05
Published:
2017-04-05
Supported by:
supported by the National Natural Science Foundation of China (61364009, 21466026, 61640312) and the Natural Science Foundation of Inner Mongolia (2015MS0615).
齐咏生1, 张海利1, 王林1, 高学金2, 陆晨曦1
通讯作者:
齐咏生
基金资助:
国家自然科学基金项目(61364009,21466026,61640312);内蒙古自治区自然科学基金项目(2015MS0615)。
CLC Number:
QI Yongsheng, ZHANG Haili, WANG Lin, GAO Xuejin, LU Chenxi. Fault detection and diagnosis for chillers using MSPCA-KECA[J]. CIESC Journal, 2017, 68(4): 1499-1508.
齐咏生, 张海利, 王林, 高学金, 陆晨曦. 基于MSPCA-KECA的冷水机组故障监测及诊断[J]. 化工学报, 2017, 68(4): 1499-1508.
[1] | 赵春晖, 王福利, 姚远. 基于时段的间歇过程统计建模在线监测及质量预报[J]. 自动化学报, 2010, 36(3):366-374.ZHAO C H, WANG F L, YAO Y. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3):366-374. |
[2] | ALDRICH C, AURET L. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods[M]. London:Springer London, 2013:371. |
[3] | 蒋丽英, 王树青. 基于MPCA-MDPLS的间歇过程的故障诊断[J]. 化工学报, 2005, 56(3):482-486.JIANG L Y, WANG S Q. Fault diagnosis for batch processes based on MPCA-MDPLS[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3):482-486. |
[4] | 张成, 李元. 基于统计模量分析间歇过程故障监测方法研究[J]. 仪器仪表学报, 2013, 23(9):2103-2110.ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 23(9):2103-2110. |
[5] | GALICIA H J, HE Q P, WANG J. Statistics pattern analysis-fault detection and diagnosis[C]//NICK S. Proceedings of the ISA Automation Week. AL, USA:FOCAPO 2012, 2012:325-330. |
[6] | WANG J, HE Q P. Multivariate statistical process monitoring based on statistics pattern analysis[J]. Industrial & Engineering Chemistry Research, 2010, 49(17):7858-7869. |
[7] | GAO X, HOU J. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process[J]. Neurocomputing, 2016, 174:906-911. |
[8] | 梁晴晴, 韩华, 崔晓钰. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3):1023-1031.LIANG Q Q, HAN H, CUI X Y. Fault diagnosis for refrigeration system based on PCA-PNN[J]. CIESC Journal, 2016, 67(3):1023-1031. |
[9] | DING S X. Data-driven design of monitoring and diagnosis systems for dynamic processes:a review of subspace technique based schemes and some recent results[J]. Journal of Process Control, 2014, 24:431-449. |
[10] | YAN K, SHEN W, MULUMBA T, et al. ARX model based fault detection and diagnosis for chillers using support vector machines[J]. Energy and Buildings, 2014, (81):287-295. |
[11] | KARIMI I, SALAHSHOOR K. A new fault detection and diagnosis approach for a distillation column system based on a combined PCA and ANFIS scheme[J]. IEEE Conference on Cybernetics & Intelligent Systems, 2012, 34(1):13-21. |
[12] | HONG J J, ZHANG J. Progressive PCA modeling for enhanced fault diagnosis in a batch process[C]//IEEE. International Conference on Control, Automation and Systems 2010. United States:IEEE Computer Society, 2010:713-718. |
[13] | XIE S K, LAWNIZAK A T, LIO' P, et al. Feature extraction by multi-scale principal component analysis and classification in spectral domain[J]. Engineering, 2013, 5:268-271. |
[14] | WANG D, ROMAGNOLI J A. Robust multi-scale principal components analysis with applications to process monitoring[J]. Journal of Process Control, 2005, 15:869-882. |
[15] | JENSSEN R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):847-860. |
[16] | JIANG Q C, YAN X F, LÜ Z M, et al. Fault detection in nonlinear chemical process based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186. |
[17] | SHI J, JIANG Q K, ZHANG Q, et al. Sparse kernel entropy component analysis for dimensionality reduction of biomedical data[J]. Neurocomputing, 2015, 168:930-940. |
[18] | GÓMEZ-CHOVA L, JENSSEN R, CAMPS-VALLS G. Kernel entropy component analysis for remote sensing image clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):312-316. |
[19] | LIU X, WU X J. ECA and 2DECA:Entropy contribution based methods for face recognition inspired by KECA[C]//IEEE. 2011 International Conference of Soft Computing and Pattern Recognition. United States:IEEE Computer Society, 2011:544-549. |
[20] | YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147:395-402. |
[21] | JIA X M, MENG Q H, JING Y Q, et al. A new method combining KECA-LDA with ELM for classification of Chinese liquors using electronic nose[J]. IEEE Sensors Journal, 2016, 16(22):8010-8017. |
[22] | SHI J, JIANG Q, MAO R, et al. FR-KECA:fuzzy robust kernel entropy component analysis[J]. Neurocomputing, 2015, 149:1415-1423. |
[23] | YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5):395-402. |
[24] | JIANG Q C, YAN X F, LÜ Z M, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186. |
[25] | YANG Y H, LI H Q, LI C L, et al. Kernel entropy component analysis based process monitoring method with process subsystem division[C]//IEEE. 201527th Chinese Control and Decision Conference. USA:IEEE, 2015:2730-2734. |
[26] | JENSSEN R, ELTOFT T. A new information theoretic analysis of sum-of-squared-error kernel clustering[J]. Neurocomputing, 2008, 72(1/2/3):23-32. |
[27] | JENSSEN R, PRINCIPE J, ERDOGMUSD, et al. The Cauchy-Schwarz divergence and Parzen windowing:connections to graph theory and Mercer kernel[J]. Journal of the Franklin Institute, 2006, 343(6):614-629. |
[28] | 李冠男, 胡云鹏, 陈焕新, 等. 基于SVDD的冷水机组传感器故障检测及效率分析[J]. 化工学报, 2015, 66(5):1815-1820.LI G N, HU Y P, CHEN H X, et al. SVDD-based chiller sensor fault detection method and its detection efficiency[J]. CIESC Journal, 2015, 66(5):1815-1820. |
[29] | 谢磊, 刘雪芹, 张建明, 等. 基于NGPP-SVDD的非高斯过程监控及其应用研究[J]. 自动化学报, 2009, 35(1):107-112.XIE L, LIU X Q, ZHANG J M, et al. Non-Gaussian process monitoring based on NGPP-SVDD[J]. Acta Auomatica Sinica, 2009, 35(1):107-112. |
[30] | COMSTOCK M C, AUN J E. Development and validation of a mechanistic, dynamic model for a vapor compression centrifugal liquid chiller[D]. USA:ASHRAE, 2002.ting, 2015, 147:395-402. |
[21] | JIA X M,MENG Q H,JING Y Q,et al. A New Method Combining KECA-LDA With ELM for Classification of Chinese Liquors Using Electronic Nose[J].IEEE Sensors Journal,2016,16(22):8010-8017. |
[22] | SHI J, JIANG Q, MAO R, et al. FR-KECA:Fuzzy robust kernel entropy component analysis[J].Neurocomputing,2015,149:1415-1423. |
[23] | YANG Y H, LI X L, LIU X Z,et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5):395-402. |
[24] | JIANG Q C,YAN X F, LV Z M,et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and ngular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6):1181-1186. |
[25] | YANG Y H,LI H Q,LI C L,et al. Kernel Entropy Component Analysis Based Process Monitoring Method with Process Subsystem Division[C]//IEEE.201527th Chinese Control and Decision Conference.USA:IEEE,2015:2730-2734. |
[26] | JENSSEN R, ELTOFT T. A New Information Theoretic Analysis of Sum-of-Squared-Error Kernel Clustering[J]. Neurocomputing, 2008, 72(1/2/3):23-32. |
[27] | JENSSEN R,PRINCIPE J,ERDOGMUSD, et al. The Cauchy-Schwarz Divergence and Parzen Windowing:Connections to Graph Theory and Mercer Kernel[J]. Journal of the Franklin Institute, 2006, 343(6):614-629. |
[28] | 李冠男,胡云鹏,陈焕新等. 基于SVDD的冷水机组传感器故障检测及效率分析[J].化工学报, 2015,66(5):1815-1820. LI G N, HU Y P,CHEN H X, et al.SVDD-based chiller sensor fault detection method and its detection efficiency[J].CIESC Journal, 2015,66(5):1815-1820. |
[29] | 谢磊,刘雪芹,张建明等. 基于NGPP-SVDD的非高斯过程监控及其应用研究[J].自动化学报, 2009,35(1):107-112. XIE L,LIU X Q,ZHANG J M, et al. Non-Gaussian process monitoring based on NGPP-SVDD[J]. ACTA AUOMATICA SINICA, 2009, 35(1):107-112. |
[30] | COMSTOCK M C, BRAUN J E. Development And Validation Of A Mechanistic, Dynamic Model For A Vapor Compression Centrifugal Liquid Chiller[D].USA:ASHRAE,2002. |
[1] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[2] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[3] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[4] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[5] | ZHANG Chi, LI Hao, HU Haitao, ZHU Chong, ZHANG Yuying, NAN Guopeng, SHU Yue. Aircraft bearing fault diagnosis based on automatic feature engineering [J]. CIESC Journal, 2021, 72(S1): 430-436. |
[6] | Xin YANG, Zherui MA, Henan SHEN, Hongwei CHEN. Fault diagnosis of airflow jamming fault in double circulating fluidized bed based on multi-scale feature energy and KELM [J]. CIESC Journal, 2019, 70(7): 2616-2625. |
[7] | Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA [J]. CIESC Journal, 2019, 70(7): 2594-2605. |
[8] | Kun ZHAI, Wenxia DU, Feng LYU, Tao XIN, Xiyuan JU. Fault detect method based on improved dynamic kernel principal component analysis [J]. CIESC Journal, 2019, 70(2): 716-722. |
[9] | Chunyan LU, Wei LI. Fault diagnosis method of petrochemical air compressor based on deep belief network [J]. CIESC Journal, 2019, 70(2): 757-763. |
[10] | Kaixiang PENG, Chuanfang ZHANG, Liang MA, Jie DONG, Ruihua JIAO, Peng TANG. System-levels-based holographic fault diagnosis for complex industrial processes [J]. CIESC Journal, 2019, 70(2): 590-598. |
[11] | Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction [J]. CIESC Journal, 2019, 70(2): 736-749. |
[12] | LI Peijie, YANG Bo, LI Hongguang. Association rules based conditional state fuzzy Petri nets with applications in fault diagnosis [J]. CIESC Journal, 2018, 69(8): 3517-3527. |
[13] | WANG Zhanwei, WANG Lin, LIANG Kunfeng, YUAN Junfei, WANG Zhiwei. Chiller fault diagnosis based on fusional Bayesian network [J]. CIESC Journal, 2018, 69(7): 3167-3173. |
[14] | XU Yuge, SUN Chengli, LAI Chunling, LUO Fei. Ensemble WELM method for imbalanced learning in fault diagnosis of wastewater treatment process [J]. CIESC Journal, 2018, 69(7): 3114-3124. |
[15] | HUA Li, YU Haichen, SHAO Cheng, GONG Shixin. Monitoring and diagnosis of abnormal condition in ethylene production process based on SVM-BOXPLOT [J]. CIESC Journal, 2018, 69(3): 1053-1063. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 1410
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||