1 |
顾伟, 翁一武, 曹广益, 等. 低温热能发电的研究现状和发展趋势[J]. 热能动力工程, 2007, 22(2): 115-119, 222.
|
|
Gu W, Weng Y W, Cao G Y, et al. The latest research findings concerning low-temperature heat energy-based power generation and its development trend[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(2): 115-119, 222.
|
2 |
张建亮. 中温余热热源有机朗肯循环工质比较[J]. 煤气与热力, 2020, 40(4): 24-27, 43.
|
|
Zhang J L. Comparison of organic Rankine cycle working fluids of medium temperature waste heat source[J]. Gas & Heat, 2020, 40(4): 24-27, 43.
|
3 |
洪文鹏, 何建军. 回收电厂余热的新型吸收式热泵系统[J]. 东北电力大学学报, 2019, 39(3): 67-73.
|
|
Hong W P, He J J. The new absorption heat pump system to reclam waste heat in power plant[J]. Journal of Northeast Electric Power University, 2019, 39(3): 67-73.
|
4 |
张峰源, 冯杰, 王运春, 等. 闪蒸发电技术及其应用[C]//第八届全国能源与热工学术年会论文集. 大连,2015:195-200.
|
|
Zhang F Y, Feng J, Wang Y C, et al. Flash evaporation generation technology and application[C]// Proceedings of the 8th National Energy and Thermal Engineering Academic Conference. Dalian, 2015: 195-200.
|
5 |
吴双应, 汪菲, 肖兰. 基于低温烟气余热发电的Kalina循环热经济性能分析[J]. 化工学报, 2017, 68(3): 1170-1177.
|
|
Wu S Y, Wang F, Xiao L. Thermo-economic performance analysis of Kalina cycle based on low temperature flue gas waste heat power generation[J]. CIESC Journal, 2017, 68(3): 1170-1177.
|
6 |
吴元旦. 中低温余热发电的混合工质有机朗肯循环性能研究[D]. 上海: 上海交通大学, 2017.
|
|
Wu Y D. Performance analysis of zeotropic mixture orc applied to generate with mid-low-grade waste heat source[D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
7 |
魏东红, 陆震, 鲁雪生, 等. 废热源驱动的有机朗肯循环系统变工况性能分析[J]. 上海交通大学学报, 2006, 40(8): 1398-1402.
|
|
Wei D H, Lu Z, Lu X S, et al. Performances analysis of the organic Rankine cycle driven by exhaust under disturbance conditions[J]. Journal of Shanghai Jiao Tong University, 2006, 40(8): 1398-1402.
|
8 |
郭浩, 公茂琼, 董学强, 等. 低温烟气余热利用有机朗肯循环工质选择[J]. 工程热物理学报, 2012, 33(10): 1655-1658.
|
|
Guo H, Gong M Q, Dong X Q, et al. Working fluid section of organic Rankine cycle(ORC) in low temperature exhaust heat utilized[J]. Journal of Engineering Thermophysics, 2012, 33(10): 1655-1658.
|
9 |
申爱景, 刘强, 段远源,等. 中高温太阳能跨临界ORC的热力性能分析[C]//中国工程热物理学会2014年会论文集.中国工程热物理学会,2014.
|
|
Shen A J, Liu Q, Duan Y Y, et al. Thermal performance analysis of medium-high temperature solar transcritical ORC[C]// Symposiun of Chinese Society of Engineering Thermophysics 2014. Chinese Society of Engineering Thermophysics, 2014.
|
10 |
Pérez-Grande I, Leo T J. Optimization of a commercial aircraft environmental control system[J]. Applied Thermal Engineering, 2002, 22(17): 1885-1904.
|
11 |
Huang Y C, Hung C I, Chen C K. An ecological exergy analysis for an irreversible Brayton engine with an external heat source[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(5): 413-421.
|
12 |
王俊峰, 黄彦平, 臧金光,等. 超临界二氧化碳布雷顿循环热力学优化研究[J]. 核科学与技术, 2020, 8(2):53-60.
|
|
Wang J F, Huang Y P, Zang J G, et al. Investigations on thermodynamic optimization of supercritical CO2 Brayton cycle[J]. Nuclear Science and Technology, 2020, 8 (2): 53-60
|
13 |
陈双涛, 侯予, 陈良. 空间闭式布雷顿太阳能热动力系统㶲分析[J]. 太阳能学报, 2010, 31(3): 351-356.
|
|
Chen S T, Hou Y, Chen L. Exergy analysis of solar dynamic closed Brayton cycle for space applications[J]. Acta Energiae Solaris Sinica, 2010, 31(3): 351-356.
|
14 |
Mondal S, De S. CO2 based power cycle with multi-stage compression and intercooling for low temperature waste heat recovery[J]. Energy, 2015, 90: 1132-1143.
|
15 |
Garg P, Kumar P, Srinivasan K. Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. The Journal of Supercritical Fluids, 2013, 76: 54-60.
|
16 |
Mecheri M, Le Moullec Y. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771.
|
17 |
郑开云. 超临界工质布雷顿循环热力学分析[J]. 南方能源建设, 2018, 5(3): 42-47.
|
|
Zheng K Y. Thermodynamic analysis of supercritical working fluid Brayton cycle[J]. Southern Energy Construction, 2018, 5(3): 42-47.
|
18 |
黄潇立, 王俊峰, 臧金光. 超临界二氧化碳布雷顿循环热力学特性研究[J]. 核动力工程, 2016, 37(3): 34-38.
|
|
Huang X L, Wang J F, Zang J G. Thermodynamic analysis of coupling supercritical carbon dioxide Brayton cycles[J]. Nuclear Power Engineering, 2016, 37(3): 34-38.
|
19 |
Harvego E A, Kellar M C. Evaluation and optimization of a supercritical carbon dioxide power conversion cycle for nuclear applications[J]. Australian & New Zealand Journal of Psychiatry, 2017, 43(2): 118-128.
|
20 |
张仙平, 郑慧凡, 王方, 等. 基于R744的混合工质的研究进展[J]. 流体机械, 2016, 44(4): 69-75, 28.
|
|
Zhang X P, Zheng H F, Wang F, et al. Review of R744 based mixture working fluid[J]. Fluid Machinery, 2016, 44(4): 69-75, 28.
|
21 |
Yu B B, Wang D D, Liu C C, et al. Performance improvements evaluation of an automobile air conditioning system using CO2-propane mixture as a refrigerant[J]. International Journal of Refrigeration, 2018, 88: 172-181.
|
22 |
Hu L, Chen D Q, Huang Y P, et al. Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor[J]. Energy, 2015, 89: 874-886.
|
23 |
Shu G Q, Yu Z G, Tian H, et al. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery[J]. Energy Conversion and Management, 2018, 174: 668-685.
|
24 |
Pan L S, Wei X L, Shi W X. Performance analysis of a zeotropic mixture (R290/CO2) for trans-critical power cycle[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 572-577.
|
25 |
Lewis T G, Conboy T M, Wright S A. Supercritical CO2 mixture behavior for advanced power cycles and applications[C]//SCO2 Power Cycle Symposium. Boulder, Colorado, 2011.
|
26 |
Wright S, Conboy T, Ames D. CO2-based mixtures as working fluids for geothermal turbines[R]. Office of Scientific and Technical Information (OSTI), 2012.
|
27 |
郭嘉琪, 王坤, 朱含慧, 等. 超临界CO2及其混合工质布雷顿循环热力学分析[J]. 工程热物理学报, 2017, 38(4): 695-702.
|
|
Guo J Q, Wang K, Zhu H H, et al. Thermodynamic analysis of Brayton cycles using supercritical carbon dioxide and its mixture as working fluid[J]. Journal of Engineering Thermophysics, 2017, 38(4): 695-702.
|
28 |
Jeong W S, Lee J I, Jeong Y H. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR[J]. Nuclear Engineering and Design, 2011, 241(6): 2128-2137.
|
29 |
刘昕昕. 干冷CO2基混合工质超临界布雷顿循环性能研究[D]. 济南: 山东大学, 2020.
|
|
Liu X X. A performance study on CO2-based mixture working fluids used for the dry-cooling supercritical Brayton cycle[D]. Jinan: Shandong University, 2020.
|
30 |
吴腾. 中低温有机朗肯循环的性能优化与实验平台构建[D]. 北京: 华北电力大学, 2015.
|
|
Wu T. Performance optimization and system construction of organic Rankine cycle using medium and low temperature waste heat[D]. Beijing: North China Electric Power University, 2015.
|