CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1389-1402.DOI: 10.11949/0438-1157.20211358
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Heng MAO(),Yue WANG,Sen WANG,Weimin LIU,Jing LYU,Fuxue CHEN,Zhiping ZHAO()
Received:
2021-09-22
Revised:
2021-11-24
Online:
2022-03-14
Published:
2022-03-15
Contact:
Zhiping ZHAO
通讯作者:
赵之平
作者简介:
毛恒(1989—),男,博士,基金资助:
CLC Number:
Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation[J]. CIESC Journal, 2022, 73(3): 1389-1402.
毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 Surface SEM images of PEBA membrane (a), ZIF-L/PEBA-20 (b), AZLs-0.25/PEBA-20 (c), AZLs-0.5/PEBA-20 (d), AZLs-0.75/PEBA-20 (e), and AZLs-1.0/PEBA-20 (f)
Fig.5 Cross-sectional SEM images of PEBA membrane (a), ZIF-L/PEBA-20 (b), AZLs-0.25/PEBA-20 (c), AZLs-0.5/PEBA-20 (d), AZLs-0.75/PEBA-20 (e), and AZLs-1.0/PEBA-20 (f)
样品 | 分离层厚度/μm | 表面自由能/(mN/m) | 断裂强度/MPa | 最大伸长率/% | 弹性模量/MPa |
---|---|---|---|---|---|
PEBA膜 | 18.6 | 46.5 | 2.1±0.3 | 548±23 | 98.0±4.5 |
ZIF-L/PEBA-20 | 19.4 | 37.3 | 6.9±0.2 | 990±34 | 146.0±6.3 |
AZLs-0.25/PEBA-20 | 16.7 | 34.8 | 8.0±0.4 | 1088±57 | 161.0±8.7 |
AZLs-0.5/PEBA-20 | 20.5 | 30.5 | 6.8±0.5 | 726±43 | 188.0±5.7 |
AZLs-0.75/PEBA-20 | 24.1 | 33.4 | 7.6±0.6 | 891±62 | 136.0±7.3 |
AZLs-1.0/PEBA-20 | 25.3 | 35.1 | 6.1±0.6 | 1047±48 | 124.0±9.5 |
Table1 Physicochemical properties of PEBA and AZLs-X/PEBA-20 membranes
样品 | 分离层厚度/μm | 表面自由能/(mN/m) | 断裂强度/MPa | 最大伸长率/% | 弹性模量/MPa |
---|---|---|---|---|---|
PEBA膜 | 18.6 | 46.5 | 2.1±0.3 | 548±23 | 98.0±4.5 |
ZIF-L/PEBA-20 | 19.4 | 37.3 | 6.9±0.2 | 990±34 | 146.0±6.3 |
AZLs-0.25/PEBA-20 | 16.7 | 34.8 | 8.0±0.4 | 1088±57 | 161.0±8.7 |
AZLs-0.5/PEBA-20 | 20.5 | 30.5 | 6.8±0.5 | 726±43 | 188.0±5.7 |
AZLs-0.75/PEBA-20 | 24.1 | 33.4 | 7.6±0.6 | 891±62 | 136.0±7.3 |
AZLs-1.0/PEBA-20 | 25.3 | 35.1 | 6.1±0.6 | 1047±48 | 124.0±9.5 |
Fig.8 Effects of different fillers on separation performance of AZLs/PEBA membranes: permeation flux and separation factor (a); permeability and selectivity (b)(Operating conditions: filler loading, 20%(质量); phenol concentration, 1000 mg/kg; feed temperature, 50℃)
Fig.9 Effects of AZLs-0.5 loading on separation performance of AZLs-0.5/PEBA membranes: permeation flux and separation factor (a);permeability and selectivity (b)(Operating conditions: phenol concentration, 1000 mg/kg; feed temperature, 50℃)
Fig.10 Effects of feed temperature on separation performance of AZLs-0.5/PEBA-20: permeation flux and separation factor (a), permeability and selectivity (b); Arrhenius plots ofAZLs-0.5/PEBA-20 (c) and PEBA membrane (d)(Operating conditions: phenol concentration, 1000 mg/kg)
样品 | EA,i /( kJ/ mol) | ΔHevp,i (80 oC) /( kJ/ mol) | EP,i /( kJ/mol) | |||
---|---|---|---|---|---|---|
苯酚 | 水 | 苯酚 | 水 | 苯酚 | 水 | |
PEBA膜 | 45.31 | 34.25 | 54.67 | 41.63 | -9.36 | -7.38 |
AZLs-0.5/PEBA-20 | 43.32 | 27.94 | -11.35 | -13.69 |
Table 2 Energy analysis for molecular permeation of PEBA and AZLs-0.5/PEBA-20 membranes
样品 | EA,i /( kJ/ mol) | ΔHevp,i (80 oC) /( kJ/ mol) | EP,i /( kJ/mol) | |||
---|---|---|---|---|---|---|
苯酚 | 水 | 苯酚 | 水 | 苯酚 | 水 | |
PEBA膜 | 45.31 | 34.25 | 54.67 | 41.63 | -9.36 | -7.38 |
AZLs-0.5/PEBA-20 | 43.32 | 27.94 | -11.35 | -13.69 |
Fig.11 Effects of feed concentration on separation performance of AZLs-0.5/PEBA-20: permeation flux and separation factor (a); permeability and selectivity (b)(Operating conditions: feed temperature, 80℃)
膜 | 温度/ ℃ | 浓度/ %(质量) | 总通量/ (g/(m2?h)) | 分离因子 | PSI | 文献 |
---|---|---|---|---|---|---|
PDMS | 70 | 1 | 370 | 21 | 7400 | [ |
PEBA-4033 | 60 | 2 | 350 | 23 | 7700 | [ |
60 | 1 | 620 | 20 | 11780 | [ | |
PERVAP-1060 | 60 | 2 | 6840 | 6 | 34200 | [ |
OA-PDMS | 70 | 0.5 | 320 | 6.3 | 1696 | [ |
ZSM-5/PDMS | 80 | 0.01 | 1590 | 4.5 | 5565 | [ |
Polyimide | 70 | 1 | 370 | 7.5 | 2405 | [ |
PIM-1 | 70 | 1 | 210 | 16 | 3150 | [ |
PEBA-2533 | 70 | 0.1 | 800 | 52.6 | 41280 | [ |
80 | 0.1 | 1430 | 25 | 34320 | [ | |
PU/ZSM-ECD | 80 | 0.3 | 980 | 9.3 | 8134 | [ |
PUCD | 70 | 3 | 70 | 49 | 3360 | [ |
PEBA/PVDF | 80 | 0.1 | 6560 | 9 | 52480 | [ |
AZLs/PEBA | 70 | 0.1 | 1362 | 22.3 | 29011 | 本文 |
80 | 0.1 | 2046 | 25.4 | 49922 |
Table 3 Performance comparison of various pervaporation membranes in separating phenol aqueous solution
膜 | 温度/ ℃ | 浓度/ %(质量) | 总通量/ (g/(m2?h)) | 分离因子 | PSI | 文献 |
---|---|---|---|---|---|---|
PDMS | 70 | 1 | 370 | 21 | 7400 | [ |
PEBA-4033 | 60 | 2 | 350 | 23 | 7700 | [ |
60 | 1 | 620 | 20 | 11780 | [ | |
PERVAP-1060 | 60 | 2 | 6840 | 6 | 34200 | [ |
OA-PDMS | 70 | 0.5 | 320 | 6.3 | 1696 | [ |
ZSM-5/PDMS | 80 | 0.01 | 1590 | 4.5 | 5565 | [ |
Polyimide | 70 | 1 | 370 | 7.5 | 2405 | [ |
PIM-1 | 70 | 1 | 210 | 16 | 3150 | [ |
PEBA-2533 | 70 | 0.1 | 800 | 52.6 | 41280 | [ |
80 | 0.1 | 1430 | 25 | 34320 | [ | |
PU/ZSM-ECD | 80 | 0.3 | 980 | 9.3 | 8134 | [ |
PUCD | 70 | 3 | 70 | 49 | 3360 | [ |
PEBA/PVDF | 80 | 0.1 | 6560 | 9 | 52480 | [ |
AZLs/PEBA | 70 | 0.1 | 1362 | 22.3 | 29011 | 本文 |
80 | 0.1 | 2046 | 25.4 | 49922 |
1 | Cao X T, Wang K A, Feng X S. Removal of phenolic contaminants from water by pervaporation[J]. Journal of Membrane Science, 2021, 623: 119043. |
2 | Jin M Y, Lin Y Q, Liao Y, et al. Development of highly-efficient ZIF-8@PDMS/PVDF nanofibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process[J]. Journal of Membrane Science, 2018, 568: 121-133. |
3 | Khan R, Ul Haq I, Mao H, et al. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution[J]. Separation and Purification Technology, 2021, 256: 117804. |
4 | Mao H, Li S H, Xu L H, et al. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: crystal evolution and preferential orientation[J]. Journal of Membrane Science, 2021, 638: 119611. |
5 | Han T T, Xiao Y L, Tong M M, et al. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution[J]. Chemical Engineering Journal, 2015, 275: 134-141. |
6 | Tian W, Lin J, Zhang H, et al. Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 408: 124459. |
7 | 齐亚兵, 杨清翠. 煤化工废水脱酚技术研究进展[J]. 应用化工, 2021, 50(5): 1414-1419. |
Qi Y B, Yang Q C. Research progress on removal of phenols from coal chemical wastewater[J]. Applied Chemical Industry, 2021, 50(5): 1414-1419. | |
8 | Mao H, Li S H, Zhang A S, et al. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave[J]. Separation and Purification Technology, 2021, 272: 118813. |
9 | 方丽君, 王景梅, 林巧靖, 等. 二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究[J]. 化工学报, 2021, 72(7): 3716-3727. |
Fang L J, Wang J M, Lin Q J, et al. Enrichment of phenol in water by dibenzo-18-crown ether-6/polyether block amide membrane[J]. CIESC Journal, 2021, 72(7): 3716-3727. | |
10 | Ji Y, Chen G, Liu G, et al. Ultrathin membranes with a polymer/nanofiber interpenetrated structure for high-efficiency liquid separations[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36717-36726. |
11 | Yang D C, Tian D X, Xue C, et al. Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery[J]. Nano Letters, 2018, 18(10): 6150-6156. |
12 | 牟春霞, 张时雨, 邹昀, 等. 疏水SiO2填充PDMS膜分离水中乙酸正丁酯的性能[J]. 化工学报, 2017, 68(6): 2407-2414. |
Mu C X, Zhang S Y, Zou Y, et al. Separation of n-butyl acetate from aqueous solution using PDMS membrane filled with hydrophobic SiO2 [J]. CIESC Journal, 2017, 68(6): 2407-2414. | |
13 | Xu S, Zhang H, Yu F, et al. Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90[J]. Separation and Purification Technology, 2018, 206: 80-89. |
14 | Wang H, Liu Y L, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges[J]. Advanced Materials, 2020, 32(44): 2002603. |
15 | Jayaramulu K, Geyer F, Schneemann A, et al. Hydrophobic metal-organic frameworks[J]. Advanced Materials, 2019, 31(32): 1900820. |
16 | Liu Q, Li Y, Li Q, et al. Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures[J]. Separation and Purification Technology, 2019, 214: 2-10. |
17 | Zhang A S, Li S H, Ahmad A, et al. Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: adsorption simulation and separation characteristics[J]. Journal of Membrane Science, 2021, 619: 118807. |
18 | Wang H, Tang S H, Ni Y X, et al. Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes[J]. Journal of Membrane Science, 2020, 598: 117791. |
19 | Chen R Z, Yao J F, Gu Q F, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption[J]. Chemical Communications, 2013, 49(82): 9500. |
20 | 王艳芳, 毛恒, 蔡玮玮, 等. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
Wang Y F, Mao H, Cai W W, et al. Enhancing ethanol production efficiency by ZIF-L/PDMS mixed matrix membrane via vapor permeation-fermentation coupling process[J]. CIESC Journal, 2021, 72(10): 5226-5236. | |
21 | Mao H, Zhen H G, Ahmad A, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation[J]. Journal of Membrane Science, 2019, 582: 307-321. |
22 | Li Q Q, Cheng L, Shen J, et al. Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler[J]. Separation and Purification Technology, 2017, 178: 105-112. |
23 | Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8): 1741-1747. |
24 | 路姣姣, 毛恒, 王涛, 等. HNTs填充PDMS膜的制备及其分离ABE-水体系的研究[J]. 膜科学与技术, 2020, 40(1): 53-63. |
Lu J J, Mao H, Wang T, et al. Preparation of HNTs filled PDMS membranes for the separation of ABE from aqueous solution[J]. Membrane Science and Technology, 2020, 40(1): 53-63. | |
25 | Kulkarni S S, Kittur A A, Aralaguppi M I, et al. Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isopropanol mixtures[J]. Journal of Applied Polymer Science, 2004, 94(3): 1304-1315. |
26 | Wang S F, Mahalingam D, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration[J]. Journal of Materials Chemistry A, 2019, 7(19): 11673-11682. |
27 | Pan F, Cheng Q, Jia H, et al. Facile approach to polymer–inorganic nanocomposite membrane through a biomineralization-inspired process[J]. Journal of Membrane Science, 2010, 357: 171-177. |
28 | Liu S N, Liu G P, Shen J, et al. Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production[J]. Separation and Purification Technology, 2014, 133: 40-47. |
29 | Kolokolov D I, Stepanov A G, Jobic H. Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by 2H NMR: saloon doors for the guests[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27512-27520. |
30 | Khan A, Ali M, Ilyas A, et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation[J]. Separation and Purification Technology, 2018, 206: 50-58. |
31 | Feng X S, Huang R Y M. Estimation of activation energy for permeation in pervaporation processes[J]. Journal of Membrane Science, 1996, 118(1): 127-131. |
32 | Liu W P, Li Y F, Meng X X, et al. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance[J]. Journal of Materials Chemistry A, 2013, 1(11): 3713. |
33 | Wang X L, Chen J X, Fang M Q, et al. ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution[J]. Separation and Purification Technology, 2016, 163: 39-47. |
34 | Wu P, Field R W, England R, et al. A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams[J]. Journal of Membrane Science, 2001, 190(2): 147-157. |
35 | Kujawski W, Warszawski A, Ratajczak W, et al. Application of pervaporation and adsorption to the phenol removal from wastewater[J]. Separation and Purification Technology, 2004, 40(2): 123-132. |
36 | Böddeker K W, Bengtson G, Bode E. Pervaporation of low volatility aromatics from water[J]. Journal of Membrane Science, 1990, 53(1/2): 143-158. |
37 | Ye H, Yan X, Zhang X, et al. Pervaporation properties of oleyl alcohol-filled polydimethylsiloxane membranes for the recovery of phenol from wastewater[J]. Iranian Polymer Journal, 2017, 26(8): 639-649. |
38 | Li D, Yao J, Sun H, et al. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane[J]. Applied Surface Science, 2018, 427: 288-297. |
39 | Pithan F, Staudt-Bickel C. Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation[J]. ChemPhysChem, 2003, 4(9): 967-973. |
40 | Budd P, Elabas E, Ghanem B, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
41 | Hao X G, Pritzker M, Feng X S. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(1/2): 96-102. |
42 | Ye H, Zhang X, Zhao Z X, et al. Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water[J]. Iranian Polymer Journal, 2017, 26(3): 193-203. |
43 | Ye H, Wang J, Wang Y, et al. Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes[J]. Iranian Polymer Journal, 2013, 22(8): 623-633. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[9] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[12] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[13] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[14] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||