CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1585-1596.DOI: 10.11949/0438-1157.20211838
• Separation engineering • Previous Articles Next Articles
Shiyi GE1,2(),Yao YANG1,2(),Zhengliang HUANG1,Jingyuan SUN1,Jingdai WANG1,Yongrong YANG1
Received:
2021-12-29
Revised:
2022-02-17
Online:
2022-04-25
Published:
2022-04-05
Contact:
Yao YANG
葛世轶1,2(),杨遥1,2(),黄正梁1,孙婧元1,王靖岱1,阳永荣1
通讯作者:
杨遥
作者简介:
葛世轶(1993—),男,博士,基金资助:
CLC Number:
Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation[J]. CIESC Journal, 2022, 73(4): 1585-1596.
葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596.
Add to citation manager EndNote|Ris|BibTeX
颗粒 | 商业牌号 | 类型 | 催化剂 | 密度/(kg/m3) | 熔融指数/(g/10 min) |
---|---|---|---|---|---|
PE-A | QHM32 | HDPE | Metallocene | 937 | 0.6 |
PE-B | QHM22 | HDPE | Metallocene | 937 | 0.6 |
PE-C | DMG1820 | LLDPE | Ziegler-Natta | 918 | 2.0 |
PE-D | DGDB2480 | HDPE | Chromium | 945 | 0.46 |
Table 1 Properties of polyethylene particles
颗粒 | 商业牌号 | 类型 | 催化剂 | 密度/(kg/m3) | 熔融指数/(g/10 min) |
---|---|---|---|---|---|
PE-A | QHM32 | HDPE | Metallocene | 937 | 0.6 |
PE-B | QHM22 | HDPE | Metallocene | 937 | 0.6 |
PE-C | DMG1820 | LLDPE | Ziegler-Natta | 918 | 2.0 |
PE-D | DGDB2480 | HDPE | Chromium | 945 | 0.46 |
Circularity | Typical images |
---|---|
0.93—0.94 | |
0.92—0.93 | |
0.91—0.92 | |
0.90—0.91 | |
0.89—0.90 | |
0.88—0.89 |
Table 2 Circularity and corresponding projection images
Circularity | Typical images |
---|---|
0.93—0.94 | |
0.92—0.93 | |
0.91—0.92 | |
0.90—0.91 | |
0.89—0.90 | |
0.88—0.89 |
1 | Alizadeh A, McKenna T F L. Particle growth during the polymerization of olefins on supported catalysts. Part 2: Current experimental understanding and modeling progresses on particle fragmentation, growth, and morphology development[J]. Macromolecular Reaction Engineering, 2018, 12(1): 1700027. |
2 | Cecchin G, Morini G, Pelliconi A. Polypropene product innovation by reactor granule technology[J]. Macromolecular Symposia, 2001, 173(1): 195-210. |
3 | Hutchinson R A, Ray W H. Polymerization of olefins through heterogeneous catalysis. IX. Experimental study of propylene polymerization over a high activity MgCl2-supported Ti catalyst[J]. Journal of Applied Polymer Science, 1991, 43(7): 1271-1285. |
4 | Hock C W. How TiCl3 catalysts control the texture of as-polymerized polypropylene[J]. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966, 4(12): 3055-3064. |
5 | Wristers J. Direct examination of polymerization catalyst by electron scanning microscopy[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1973, 11(8): 1619-1629. |
6 | Chen Y, Liu X G. Modeling mass transport of propylene polymerization on Ziegler-Natta catalyst[J]. Polymer, 2005, 46(22): 9434-9442. |
7 | Harshe Y M, Utikar R P, Ranade V V. A computational model for predicting particle size distribution and performance of fluidized bed polypropylene reactor[J]. Chemical Engineering Science, 2004, 59(22/23): 5145-5156. |
8 | McKenna T F L, di Martino A, Weickert G, et al. Particle growth during the polymerisation of olefins on supported catalysts, 1-nascent polymer structures[J]. Macromolecular Reaction Engineering, 2010, 4(1): 40-64. |
9 | Pater J T M, Weickert G, Loos J, et al. High precision prepolymerization of propylene at extremely low reaction rates—kinetics and morphology[J]. Chemical Engineering Science, 2001, 56(13): 4107-4120. |
10 | Ciardelli F, Altomare A, Michelotti M. From homogeneous to supported metallocene catalysts[J]. Catalysis Today, 1998, 41(1/2/3): 149-157. |
11 | Hendrickson G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting[J]. Chemical Engineering Science, 2006, 61(4): 1041-1064. |
12 | Giffin A, Mehrani P. Effect of gas relative humidity on reactor wall fouling generated due to bed electrification in gas-solid fluidized beds[J]. Powder Technology, 2013, 235: 368-375. |
13 | Schmeal W R, Street J R. Polymerization in expanding catalyst particles[J]. AIChE Journal, 1971, 17(5): 1188-1197. |
14 | Singh D, Merrill R P. Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts[J]. Macromolecules, 1971, 4(5): 599-604. |
15 | Galvan R, Tirrell M. Molecular weight distribution predictions for heterogeneous Ziegler-Natta polymerization using a two-site model[J]. Chemical Engineering Science, 1986, 41(9): 2385-2393. |
16 | Nagel E J, Kirillov V A, Ray W H. Prediction of molecular weight distributions for high-density polyolefins[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(3): 372-379. |
17 | Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology[J]. Journal of Applied Polymer Science, 1992, 44(8): 1389-1414. |
18 | Sheikhzadeh M, Pourmahdian S. A multipore model for heterogeneous catalytic polymerization: structure-performance relationships[J]. Macromolecular Reaction Engineering, 2021: 2100021. |
19 | Niegisch W D, Crisafulli S T, Nagel T S, et al. Characterization techniques for the study of silica fragmentation in the early stages of ethylene polymerization[J]. Macromolecules, 1992, 25(15): 3910-3916. |
20 | Noristi L, Marchetti E, Baruzzi G, et al. Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(16): 3047-3059. |
21 | Hong S C, Teranishi T, Soga K. Investigation on the polymer particle growth in ethylene polymerization with PS beads supported rac-Ph2Si(Ind)2ZrCl2 catalyst[J]. Polymer, 1998, 39(26): 7153-7157. |
22 | Jang Y J, Naundorf C, Klapper M, et al. Study of the fragmentation process of different supports for metallocenes by laser scanning confocal fluorescence microscopy (LSCFM)[J]. Macromolecular Chemistry and Physics, 2005, 206(20): 2027-2037. |
23 | Kittilsen P, Svendsen H F, McKenna T F. Viscoelastic model for particle fragmentation in olefin polymerization[J]. AIChE Journal, 2003, 49(6): 1495-1507. |
24 | Horáčková B, Grof Z, Kosek J. Dynamics of fragmentation of catalyst carriers in catalytic polymerization of olefins[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5264-5270. |
25 | Bossers K W, Valadian R, Zanoni S, et al. Correlated X-ray ptychography and fluorescence nano-tomography on the fragmentation behavior of an individual catalyst particle during the early stages of olefin polymerization[J]. Journal of the American Chemical Society, 2020, 142(8): 3691-3695. |
26 | Pater J T M, Weickert G, van Swaaij W P M. Polymerization of liquid propylene with a fourth-generation Ziegler–Natta catalyst: influence of temperature, hydrogen, monomer concentration, and prepolymerization method on powder morphology[J]. Journal of Applied Polymer Science, 2003, 87(9): 1421-1435. |
27 | Zanoni S, Nikolopoulos N, Welle A, et al. Early-stage particle fragmentation behavior of a commercial silica-supported metallocene catalyst[J]. Catalysis Science & Technology, 2021, 11(15): 5335-5348. |
28 | Weist E L, Ali A H, Conner W C. Morphological study of supported chromium polymerization catalysts. 1. Activation[J]. Macromolecules, 1987, 20(3): 689-693. |
29 | Rönkkö H L, Korpela T, Knuuttila H, et al. Particle growth and fragmentation of solid self-supported Ziegler-Natta-type catalysts in propylene polymerization[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309(1/2): 40-49. |
30 | Emami M, Parvazinia M, Abedini H. Gas-phase polymerization of propylene at low reaction rates: a precise look at catalyst fragmentation[J]. Iranian Polymer Journal, 2017, 26(11): 871-883. |
31 | Vestberg T, Denifl P, Wilén C E. Porous versus novel compact Ziegler-Natta catalyst particles and their fragmentation during the early stages of bulk propylene polymerization[J]. Journal of Applied Polymer Science, 2008, 110(4): 2021-2029. |
32 | Lacks D J, Mohan Sankaran R. Contact electrification of insulating materials[J]. Journal of Physics D: Applied Physics, 2011, 44(45): 453001. |
33 | Gilbert J S, Lane S J, Sparks R S J, et al. Charge measurements on particle fallout from a volcanic plume[J]. Nature, 1991, 349(6310): 598-600. |
34 | Inculet I I, Peter Castle G S, Aartsen G. Generation of bipolar electric fields during industrial handling of powders[J]. Chemical Engineering Science, 2006, 61(7): 2249-2253. |
35 | Forward K M, Lacks D J, Sankaran R M. Charge segregation depends on particle size in triboelectrically charged granular materials[J]. Physical Review Letters, 2009, 102(2): 028001. |
36 | Wang F, Wang J D, Yang Y R. Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9517-9526. |
37 | Moughrabiah W O, Grace J R, Bi X T. Effects of pressure, temperature, and gas velocity on electrostatics in gas–solid fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 320-325. |
38 | Sowinski A, Mayne A, Mehrani P. Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas-solid fluidized beds[J]. Chemical Engineering Science, 2012, 71: 552-563. |
39 | 杨遥, 葛世轶, 黄正梁, 等. 一种利用静电解析聚乙烯生长形貌的系统和方法: 111822151A[P]. 20201027. |
Yang Y, Ge S Y, Huang Z L, et al. System and method for analyzing growth morphology of polyethylene by utilizing static electricity: 111822151A[P]. 20201027. | |
40 | Maugis D. Adhesion of spheres: the JKR-DMT transition using a dugdale model[J]. Journal of Colloid and Interface Science, 1992, 150(1): 243-269. |
41 | Lantz M A, O'Shea S J, Welland M E, et al. Atomic-force-microscope study of contact area and friction on NbSe2 [J]. Physical Review B, 1997, 55(16): 10776-10785. |
42 | Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. |
43 | Affatato S, Modena E, Carmignato S, et al. The use of Raman spectroscopy in the analysis of UHMWPE uni-condylar bearing systems after run on a force and displacement control knee simulators [J]. Wear, 2013, 297(1/2): 781-790. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[3] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[4] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[5] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[6] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[7] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[8] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[9] | Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization [J]. CIESC Journal, 2023, 74(2): 559-570. |
[10] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
[11] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[12] | Xuesong WANG, Xiangyu ZENG, Cuimei BO, Shuqi TANG, Chao DONG, Jun LI, Quanling ZHANG, Xiaoming JIN, Shengli YE. Dynamic economic optimal control for PTFE batch polymerization process with free terminal [J]. CIESC Journal, 2022, 73(9): 3973-3982. |
[13] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[14] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[15] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||