CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2020-2030.DOI: 10.11949/0438-1157.20211774
• Separation engineering • Previous Articles Next Articles
Xin LIU1(),Yang PAN2,Gongping LIU2,Jing FANG1,Chunli LI1,Hao LI1()
Received:
2021-12-16
Revised:
2022-02-17
Online:
2022-05-24
Published:
2022-05-05
Contact:
Hao LI
通讯作者:
李浩
作者简介:
刘鑫(1996—),男,硕士研究生,基金资助:
CLC Number:
Xin LIU, Yang PAN, Gongping LIU, Jing FANG, Chunli LI, Hao LI. Study on the process of preliminary separation of Fischer-Tropsch synthetic water by coupling pervaporation and dividing wall column distillation[J]. CIESC Journal, 2022, 73(5): 2020-2030.
刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
Add to citation manager EndNote|Ris|BibTeX
物质 | 进料侧含量/ %(质量) | 渗透侧含量/ %(质量) | 分离因子 |
---|---|---|---|
甲醇 | 0.5082 | 3.2413 | 6.56 |
乙醇 | 0.8163 | 6.7861 | 8.85 |
丙醇 | 0.2246 | 9.9020 | 18.03 |
丁醇 | 0.1130 | 3.3914 | 31.04 |
丙酮 | 0.1069 | 3.2600 | 31.49 |
乙酸 | 0.4426 | 0.4426 | 1.00 |
Table 1 Experimental data of the pervaporation process
物质 | 进料侧含量/ %(质量) | 渗透侧含量/ %(质量) | 分离因子 |
---|---|---|---|
甲醇 | 0.5082 | 3.2413 | 6.56 |
乙醇 | 0.8163 | 6.7861 | 8.85 |
丙醇 | 0.2246 | 9.9020 | 18.03 |
丁醇 | 0.1130 | 3.3914 | 31.04 |
丙酮 | 0.1069 | 3.2600 | 31.49 |
乙酸 | 0.4426 | 0.4426 | 1.00 |
流股 | 主要组分 | 分离要求 |
---|---|---|
A | 甲醇、丙酮 | 乙醇含量尽可能少 |
B | 乙醇、正丙醇、正丁醇 | 甲醇不超过0.20% |
C | 水 | 水中几乎不含非酸性含氧有机物 |
Table 2 Separation of goals and requirements
流股 | 主要组分 | 分离要求 |
---|---|---|
A | 甲醇、丙酮 | 乙醇含量尽可能少 |
B | 乙醇、正丙醇、正丁醇 | 甲醇不超过0.20% |
C | 水 | 水中几乎不含非酸性含氧有机物 |
物质 | 渗透系数Qi / (g/(m2·h·kPa)) | 渗透侧总含量/ %(质量) | 进料侧含量/ %(质量) | 浓缩倍数 |
---|---|---|---|---|
甲醇 | 99.45 | 2.07 | 0.5082 | 4.07 |
乙醇 | 142.32 | 3.65 | 0.8163 | 4.47 |
丙醇 | 320.89 | 1.00 | 0.2246 | 4.45 |
丁醇 | 8240.92 | 0.50 | 0.1130 | 4.42 |
丙酮 | 152.69 | 0.48 | 0.1069 | 4.49 |
乙酸 | 461.42 | 0.44 | 0.4426 | 0.99 |
Table 3 The permeability coefficient of each component
物质 | 渗透系数Qi / (g/(m2·h·kPa)) | 渗透侧总含量/ %(质量) | 进料侧含量/ %(质量) | 浓缩倍数 |
---|---|---|---|---|
甲醇 | 99.45 | 2.07 | 0.5082 | 4.07 |
乙醇 | 142.32 | 3.65 | 0.8163 | 4.47 |
丙醇 | 320.89 | 1.00 | 0.2246 | 4.45 |
丁醇 | 8240.92 | 0.50 | 0.1130 | 4.42 |
丙酮 | 152.69 | 0.48 | 0.1069 | 4.49 |
乙酸 | 461.42 | 0.44 | 0.4426 | 0.99 |
膜组件 | 膜面积/m2 | 渗余侧水含量/ %(质量) | 渗透侧水含量/%(质量) | C2+醇回收率/% |
---|---|---|---|---|
膜组件1 | 309 | 98.34 | 82.52 | 33.72 |
膜组件2 | 372 | 98.73 | 85.79 | 61.55 |
膜组件3 | 529 | 99.10 | 88.77 | 81.92 |
膜组件4 | 1005 | 99.50 | 91.86 | 99.98 |
Table 4 Simulation results of pervaporation
膜组件 | 膜面积/m2 | 渗余侧水含量/ %(质量) | 渗透侧水含量/%(质量) | C2+醇回收率/% |
---|---|---|---|---|
膜组件1 | 309 | 98.34 | 82.52 | 33.72 |
膜组件2 | 372 | 98.73 | 85.79 | 61.55 |
膜组件3 | 529 | 99.10 | 88.77 | 81.92 |
膜组件4 | 1005 | 99.50 | 91.86 | 99.98 |
参数 | C1 | C2 | PV |
---|---|---|---|
进料量/(kg/h) | 1119.0 | — | 5000.0 |
操作压力/kPa | 101.325 | 101.325 | 101.325 |
理论板数 | 26 | 40 | — |
进料位置 | 10 | 28 | — |
回流比 | 1.10 | 13.00 | — |
塔顶采出流率/(kg/h) | 110.0 | 29.5 | — |
甲醇质量回收率/% | — | 99.00 | — |
塔釜水含量/%(质量) | 99.50 | 29.98 | — |
塔底采出流率/(kg/h) | 1009.0 | 80.5 | — |
渗透汽化能量/kW | — | — | 356 |
再沸器热负荷/kW | 155 | 113 | — |
冷凝器热负荷/kW | -76 | -113 | — |
有效能损失/kW | 82.37 | 9.19 | 42.91 |
Table 5 Parameters of PV-D process
参数 | C1 | C2 | PV |
---|---|---|---|
进料量/(kg/h) | 1119.0 | — | 5000.0 |
操作压力/kPa | 101.325 | 101.325 | 101.325 |
理论板数 | 26 | 40 | — |
进料位置 | 10 | 28 | — |
回流比 | 1.10 | 13.00 | — |
塔顶采出流率/(kg/h) | 110.0 | 29.5 | — |
甲醇质量回收率/% | — | 99.00 | — |
塔釜水含量/%(质量) | 99.50 | 29.98 | — |
塔底采出流率/(kg/h) | 1009.0 | 80.5 | — |
渗透汽化能量/kW | — | — | 356 |
再沸器热负荷/kW | 155 | 113 | — |
冷凝器热负荷/kW | -76 | -113 | — |
有效能损失/kW | 82.37 | 9.19 | 42.91 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
进料量/(kg/h) | 1119.0 | 塔顶采出流率/(kg/h) | 29.5 |
操作压力/kPa | 101.325 | 侧线采出流率/(kg/h) | 80.5 |
总理论板数 | 70 | 塔底采出流率/(kg/h) | 1009.0 |
隔板位置 | 29~58 | 塔顶甲醇质量回收率/% | 99.00 |
预分馏段理论板数 | 30 | 侧采水含量/%(质量) | 29.88 |
侧线采出位置 | 47 | 冷凝器热负荷/kW | -133 |
进料位置 | 36 | 再沸器热负荷/kW | 212 |
回流比 | 15.45 | 渗透汽化能量/kW | 356 |
汽相分配率 | 0.70 | DWC有效能损失/kW | 116.54 |
液相分配率 | 0.25 | PV有效能损失/kW | 42.91 |
Table 6 Parameters of PV-DWC process
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
进料量/(kg/h) | 1119.0 | 塔顶采出流率/(kg/h) | 29.5 |
操作压力/kPa | 101.325 | 侧线采出流率/(kg/h) | 80.5 |
总理论板数 | 70 | 塔底采出流率/(kg/h) | 1009.0 |
隔板位置 | 29~58 | 塔顶甲醇质量回收率/% | 99.00 |
预分馏段理论板数 | 30 | 侧采水含量/%(质量) | 29.88 |
侧线采出位置 | 47 | 冷凝器热负荷/kW | -133 |
进料位置 | 36 | 再沸器热负荷/kW | 212 |
回流比 | 15.45 | 渗透汽化能量/kW | 356 |
汽相分配率 | 0.70 | DWC有效能损失/kW | 116.54 |
液相分配率 | 0.25 | PV有效能损失/kW | 42.91 |
参数 | C1 | C2 |
---|---|---|
进料量/(kg/h) | 5000.0 | — |
操作压力/kPa | 101.325 | 101.325 |
理论板数 | 28 | 40 |
进料位置 | 8 | 28 |
回流比 | 4.10 | 12.80 |
塔顶采出流率/(kg/h) | 115.0 | 31.0 |
甲醇质量回收率/% | — | 99.00 |
塔釜水含量/%(质量) | 99.50 | 32.44 |
塔底采出流率/(kg/h) | 4885.0 | 84.0 |
再沸器热负荷/kW | 556 | 119 |
冷凝器热负荷/kW | -197 | -118 |
有效能损失/kW | 284.19 | 9.66 |
Table 7 Optimum process parameters of process D
参数 | C1 | C2 |
---|---|---|
进料量/(kg/h) | 5000.0 | — |
操作压力/kPa | 101.325 | 101.325 |
理论板数 | 28 | 40 |
进料位置 | 8 | 28 |
回流比 | 4.10 | 12.80 |
塔顶采出流率/(kg/h) | 115.0 | 31.0 |
甲醇质量回收率/% | — | 99.00 |
塔釜水含量/%(质量) | 99.50 | 32.44 |
塔底采出流率/(kg/h) | 4885.0 | 84.0 |
再沸器热负荷/kW | 556 | 119 |
冷凝器热负荷/kW | -197 | -118 |
有效能损失/kW | 284.19 | 9.66 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
进料量/(kg/h) | 5000.0 | 液相分配率 | 0.30 |
操作压力/kPa | 101.325 | 塔顶采出流率/(kg/h) | 31.0 |
总理论板数 | 70 | 侧线采出流率/(kg/h) | 84.0 |
隔板位置 | 29~58 | 塔底采出流率/(kg/h) | 4885.0 |
预分馏段理论板数 | 30 | 塔顶甲醇质量回收率/% | 99.00 |
侧线采出位置 | 48 | 侧采水含量/%(质量) | 31.91 |
进料位置 | 36 | 冷凝器热负荷/kW | -385 |
回流比 | 43.75 | 再沸器热负荷/kW | 744 |
汽相分配率 | 0.70 | 有效能损失/kW | 396.79 |
Table 8 Optimum process parameters of direct dividing wall column distillation process
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
进料量/(kg/h) | 5000.0 | 液相分配率 | 0.30 |
操作压力/kPa | 101.325 | 塔顶采出流率/(kg/h) | 31.0 |
总理论板数 | 70 | 侧线采出流率/(kg/h) | 84.0 |
隔板位置 | 29~58 | 塔底采出流率/(kg/h) | 4885.0 |
预分馏段理论板数 | 30 | 塔顶甲醇质量回收率/% | 99.00 |
侧线采出位置 | 48 | 侧采水含量/%(质量) | 31.91 |
进料位置 | 36 | 冷凝器热负荷/kW | -385 |
回流比 | 43.75 | 再沸器热负荷/kW | 744 |
汽相分配率 | 0.70 | 有效能损失/kW | 396.79 |
工艺 | D | DWC | PV-D | PV-DWC |
---|---|---|---|---|
能耗/kW | 675 | 744 | 624 | 568 |
节能率/% | — | -10.22 | 7.56 | 15.85 |
有效能损失/kW | 293.85 | 396.79 | 134.47 | 159.45 |
混醇产品含水量/% | 32.44 | 31.91 | 20.98 | 29.88 |
混醇产品流率(B)/(kg/h) | 84.0 | 84.0 | 80.5 | 80.5 |
塔顶乙醇含量/% | 3.05 | 1.60 | 2.37 | 2.10 |
塔顶产品流率(A)/(kg/h) | 31.0 | 31.0 | 29.5 | 29.5 |
塔釜水含量/% | 99.50 | 99.50 | 99.50 | 99.50 |
塔釜产品流率(C)/(kg/h) | 4885.0 | 4885.0 | 1009.0 | 1009.0 |
Table 9 Comparison of main parameters of four separation processes
工艺 | D | DWC | PV-D | PV-DWC |
---|---|---|---|---|
能耗/kW | 675 | 744 | 624 | 568 |
节能率/% | — | -10.22 | 7.56 | 15.85 |
有效能损失/kW | 293.85 | 396.79 | 134.47 | 159.45 |
混醇产品含水量/% | 32.44 | 31.91 | 20.98 | 29.88 |
混醇产品流率(B)/(kg/h) | 84.0 | 84.0 | 80.5 | 80.5 |
塔顶乙醇含量/% | 3.05 | 1.60 | 2.37 | 2.10 |
塔顶产品流率(A)/(kg/h) | 31.0 | 31.0 | 29.5 | 29.5 |
塔釜水含量/% | 99.50 | 99.50 | 99.50 | 99.50 |
塔釜产品流率(C)/(kg/h) | 4885.0 | 4885.0 | 1009.0 | 1009.0 |
1 | Wen X, Zhang Y H, Liu C C, et al. Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 950-955. |
2 | 张琪, 王涛, 张雪冰, 等. 费托合成产物中含氧组分资源化利用技术进展[J]. 化工进展, 2020, 39(8): 3320-3332. |
Zhang Q, Wang T, Zhang X B, et al. Advances in resource utilization of oxygenated compounds in Fischer-Tropsch synthesis products[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3320-3332. | |
3 | Majone M, Aulenta F, Dionisi D, et al. High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor[J]. Water Research, 2010, 44(9): 2745-2752. |
4 | 公磊, 吴秀章, 卢卫民, 等. 煤基高温费托合成技术进展[J]. 化工进展, 2016, 35(S1): 122-129. |
Gong L, Wu X Z, Lu W M, et al. Advances in the coal based high-temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 122-129. | |
5 | 吴丽, 任云霞, 董桂燕, 等. Fenton-UASB-生物接触氧化处理Fischer-Tropsch合成废水的研究[J]. 燃料化学学报, 2010, 38(4): 508-512. |
Wu L, Ren Y X, Dong G Y, et al. Study on Fischer-Tropsch synthesis waste water treatment by Fenton-UASB-biological contact oxidation[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 508-512. | |
6 | 孙启文, 王燕, 黄海, 等. 一种费托合成反应水的处理方法: 1696082A[P]. 2005-11-16. |
Sun Q W, Wang Y, Huang H,et al. Method for treating water reacted from Fischer-Tropsch synthesis: 1696082A[P]. 2005-11-16. | |
7 | 杨正伟, 孙启文, 张宗森. 连续精馏分离高温费托合成反应水中的含氧有机物[J]. 化学工程, 2014, 42(10): 29-33, 40. |
Yang Z W, Sun Q W, Zhang Z S. Separation of organic compounds from high-temperature Fischer-Tropsch reaction water by continuous distillation[J]. Chemical Engineering (China), 2014, 42(10): 29-33, 40. | |
8 | 张宏勋, 王天贵, 张秋香. 费托反应水中有机物初步分离的模拟研究[J]. 化学工程师, 2007, 21(11): 13-16. |
Zhang H X, Wang T G, Zhang Q X. Simulation study on organics separation from Fischer-Tropsch reaction water[J]. Chemical Engineer, 2007, 21(11): 13-16. | |
9 | Djas M, Henczka M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review[J]. Separation and Purification Technology. 2018, 201: 106-119. |
10 | Rocha M A A, Raeissi S, Hage P, et al. Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent[J]. Chemical Engineering Science. 2017, 165: 74-80. |
11 | Saboe P O, Manker L P, Michener W E, et al. In situ recovery of bio-based carboxylic acids[J]. Green Chemistry, 2018, 20(8): 1791-1804. |
12 | 马爱华, 云志. 费托合成水相副产物中具有共沸组成的低碳混合醇-水体系分离方法的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 738-743. |
Ma A H, Yun Z. Research progress of separation technologies for azeotropic mixture of lower alcohols-water system of the by-product in water of Fischer-Tropsch synthesis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(4): 738-743. | |
13 | 李春利, 张乾龙, 郭中山, 等. 费托合成水中混合醇初步分离工艺的实验与模拟[J]. 煤炭学报, 2020, 45(4): 1319-1326. |
Li C L, Zhang Q L, Guo Z S, et al. Experiment and simulation of preliminary separation process of mixed alcohols in Fischer-Tropsch water[J]. Journal of China Coal Society, 2020, 45(4): 1319-1326. | |
14 | Fang J, Li Z Y, Huang G M, et al. Externally heat-integrated multiple diabatic distillation columns (EHImxDC): basic concept and general characteristics[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 1668-1681. |
15 | 王晓红, 张远鹏, 于新帅, 等. 精馏-膜分离技术集成过程研究进展[J]. 化工进展, 2018, 37(S1): 12-18. |
Wang X H, Zhang Y P, Yu X S, et al. Research progress of hybrid distillation-membrane separation process[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 12-18. | |
16 | Skiborowski M, Wessel J, Marquardt W. Efficient optimization-based design of membrane-assisted distillation processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15698-15717. |
17 | Li H, Guo C, Guo H, et al. Methodology for design of vapor permeation membrane-assisted distillation processes for aqueous azeotrope dehydration[J]. Journal of Membrane Science. 2019, 579: 318-328. |
18 | Wu K, Li H, Li X, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: modeling, process analysis and design[J]. Chemical Engineering Science, 2021, 245: 116962. |
19 | Han W T, Han Z W, Gao X C, et al. Inter‐integration reactive distillation with vapor permeation for ethyl levulinate production: equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441. |
20 | 胡子益, 李洪波, 谭宇鑫, 等. 分子筛膜-精馏耦合用于费托合成水相副产物混合醇回收的工艺流程模拟[J]. 化工进展, 2016, 35(S2): 56-60. |
Hu Z Y, Li H B, Tan Y X, et al. Zeolite membrane dehydration and distillation coupling process simulation of F-T water by-product recovery[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 56-60. | |
21 | 汪俊锋, 王红星, 杨金杯, 等. 费托合成水相副产物混合醇分离脱水工艺模拟及优化[J]. 计算机与应用化学, 2015, 32(5): 567-571. |
Wang J F, Wang H X, Yang J B, et al. F-T of mixed alcohol aqueous by-product separation dehydration technology simulation and optimization[J]. Computers and Applied Chemistry, 2015, 32(5): 567-571. | |
22 | 汪旭, 蒋晓伟. 精馏-渗透汽化联合工艺在费托合成水回收醇类产品中的应用[J]. 化工设计, 2019, 29(3): 3-7, 25. |
Wang X, Jiang X W. Application of distillation-pervaporation combined process in Fischer-Tropsch water for alcohol products recovery[J]. Chemical Engineering Design, 2019, 29(3): 3-7, 25. | |
23 | 李玲, 柴士阳, 刘来春, 等. 费托合成水相副产物混合醇渗透蒸发分离工艺[J]. 化工进展, 2017, 36(6): 2086-2093. |
Li L, Chai S Y, Liu L C, et al. Study on separation of mixed alcohol from water phase by-product in the F-T synthesis by pervaporation technology[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2086-2093. | |
24 | Li Y K, Shen J, Guan K C, et al. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation[J]. Journal of Membrane Science, 2016, 510: 338-347. |
25 | Cheng C, Liu F F, Yang H K, et al. High-performance n-butanol recovery from aqueous solution by pervaporation with a PDMS mixed matrix membrane filled with zeolite[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7777-7786. |
26 | Lv B D, Liu G P, Dong X L, et al. Novel reactive distillation-pervaporation coupled process for ethyl acetate production with water removal from reboiler and acetic acid recycle[J]. Industrial & Engineering Chemistry Research, 2012, 51(23): 8079-8086. |
27 | Lovasz A, Mizsey P, Fonyo Z. Methodology for parameter estimation of modelling of pervaporation in flowsheeting environment[J]. Chemical Engineering Journal, 2007, 133(1/2/3): 219-227. |
28 | Koch K, Sudhoff D, Kreiß S, et al. Optimisation-based design method for membrane-assisted separation processes[J]. Chemical Engineering and Processing: Process Intensification, 2013, 67: 2-15. |
29 | 赵月红, 温浩, 许志宏. Aspen Plus用户模型开发方法探讨[J]. 计算机与应用化学, 2003, 20(4): 435-438. |
Zhao Y H, Wen H, Xu Z H. Discussions on development of user models for Aspen Plus[J]. Computers and Applied Chemistry, 2003, 20(4): 435-438. | |
30 | Rom A, Miltner A, Wukovits W, et al. Energy saving potential of hybrid membrane and distillation process in butanol purification: experiments, modelling and simulation[J]. Chemical Engineering and Processing: Process Intensification, 2016, 104: 201-211. |
31 | Liang J, Wang H H, Wang Z, et al. Optimal separation of acetonitrile and pyridine from industrial wastewater[J]. Chemical Engineering Research and Design, 2021, 169: 54-65. |
32 | Wang S, Dai Y, Ma Z Y, et al. Application of energy-saving hybrid distillation-pervaporation process for recycling organics from wastewater based on thermoeconomic and environmental analysis[J]. Journal of Cleaner Production, 2021, 294: 126297. |
33 | Zhang H R, Wang S, Tang J X, et al. Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis[J]. Energy, 2021, 229: 120774. |
34 | 方静, 相宁, 李晓春, 等. Kaibel隔壁塔用于四组分精馏的模拟优化和实验研究[J]. 化工进展, 2018, 37(5): 1646-1654. |
Fang J, Xiang N, Li X C, et al. Optimization and experimental study of Kaibel dividing-wall column for separating a quaternary system[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1646-1654. | |
35 | Cai D, Hu S, Miao Q, et al. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth[J]. Bioresource Technology, 2017, 224: 380-388. |
36 | Navarro-Amorós M A, Ruiz-Femenia R, Caballero J A. A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles[J]. AIChE Journal, 2013, 59(10): 3767-3781. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[7] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[12] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||