CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3026-3037.DOI: 10.11949/0438-1157.20220341
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yong’an CHEN1,2(),Anning ZHOU1,2(),Yunlong LI1,3,Zhiwei SHI1,2,Xinfu HE1,2,Weihong JIAO1,2
Received:
2022-03-06
Revised:
2022-04-24
Online:
2022-08-01
Published:
2022-07-05
Contact:
Anning ZHOU
陈永安1,2(),周安宁1,2(),李云龙1,3,石智伟1,2,贺新福1,2,焦卫红1,2
通讯作者:
周安宁
作者简介:
陈永安(1997—),男,硕士研究生, 基金资助:
CLC Number:
Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts[J]. CIESC Journal, 2022, 73(7): 3026-3037.
陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis/%(mass,ad) | Ultimate analysis/%(mass,ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC① | C | H | N | S | O① |
9.58 | 4.4 | 30.42 | 55.6 | 82.42 | 5.16 | 1.23 | 0.26 | 10.93 |
Table 1 Proximate analysis and ultimate analysis of BLT-coal
Proximate analysis/%(mass,ad) | Ultimate analysis/%(mass,ad) | |||||||
---|---|---|---|---|---|---|---|---|
M | A | V | FC① | C | H | N | S | O① |
9.58 | 4.4 | 30.42 | 55.6 | 82.42 | 5.16 | 1.23 | 0.26 | 10.93 |
催化剂 | SBET/(m2/g) | DBJH/nm | Vtotal/(10-2 cm3/g) |
---|---|---|---|
MgFe2O4 | 9.94 | 26.19 | 7.32 |
MgFe2O4@SiO2 | 35.35 | 14.01 | 14.82 |
MSH | 321.13 | 4.20 | 7.32 |
Table 2 Specific surface area and pore structure parameters of magnetic catalyst
催化剂 | SBET/(m2/g) | DBJH/nm | Vtotal/(10-2 cm3/g) |
---|---|---|---|
MgFe2O4 | 9.94 | 26.19 | 7.32 |
MgFe2O4@SiO2 | 35.35 | 14.01 | 14.82 |
MSH | 321.13 | 4.20 | 7.32 |
催化剂 | 半焦产率/% | 焦油产率/% | 气体产率/% | 水产率/% |
---|---|---|---|---|
none | 68.13 65.76 64.94 65.67 | 9.42 14.25 12.16 14.86 | 16.19 14.46 16.73 14.82 | 6.26 5.53 6.17 4.61 |
MgFe2O4 | ||||
MgFe2O4@SiO2 | ||||
MSH |
Table 3 Effect of magnetic catalyst on distribution of pyrolysis products
催化剂 | 半焦产率/% | 焦油产率/% | 气体产率/% | 水产率/% |
---|---|---|---|---|
none | 68.13 65.76 64.94 65.67 | 9.42 14.25 12.16 14.86 | 16.19 14.46 16.73 14.82 | 6.26 5.53 6.17 4.61 |
MgFe2O4 | ||||
MgFe2O4@SiO2 | ||||
MSH |
催化剂 | 苯类/% | 酚类/% | 脂肪 烃类/% | 稠环芳 烃类/% | 其他/% |
---|---|---|---|---|---|
none | 1.37 | 18.04 | 12.85 | 34.22 | 33.52 |
MgFe2O4 | 4.18 | 18.58 | 18.28 | 28.67 | 30.29 |
MgFe2O4@SiO2 | 4.02 | 18.21 | 17.98 | 28.91 | 30.88 |
MSH | 4.12 | 17.84 | 23.53 | 25.63 | 29.88 |
Table 4 Content of BLT-coal pyrolysis tar on different catalysts
催化剂 | 苯类/% | 酚类/% | 脂肪 烃类/% | 稠环芳 烃类/% | 其他/% |
---|---|---|---|---|---|
none | 1.37 | 18.04 | 12.85 | 34.22 | 33.52 |
MgFe2O4 | 4.18 | 18.58 | 18.28 | 28.67 | 30.29 |
MgFe2O4@SiO2 | 4.02 | 18.21 | 17.98 | 28.91 | 30.88 |
MSH | 4.12 | 17.84 | 23.53 | 25.63 | 29.88 |
催化剂 | 半焦产率/% | 焦油产率/% | 气体产率/% | 水产率/% |
---|---|---|---|---|
1R-MgFe2O4 | 65.97 | 13.23 | 14.98 | 5.82 |
1R-MgFe2O4@SiO2 | 65.01 | 11.54 | 16.98 | 6.47 |
1R-MSH | 66.63 | 13.08 | 15.12 | 5.17 |
Table 5 Effect of recovery of magnetic catalyst on distribution of pyrolysis products
催化剂 | 半焦产率/% | 焦油产率/% | 气体产率/% | 水产率/% |
---|---|---|---|---|
1R-MgFe2O4 | 65.97 | 13.23 | 14.98 | 5.82 |
1R-MgFe2O4@SiO2 | 65.01 | 11.54 | 16.98 | 6.47 |
1R-MSH | 66.63 | 13.08 | 15.12 | 5.17 |
1 | 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377. |
Wang S M, Shi Q M, Wang S Q, et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377. | |
2 | 马丽, 拓宝生. 陕西富油煤资源量居全国之首 榆林可“再造一个大庆油田”[J]. 陕西煤炭, 2020, 39(1): 220-222. |
Ma L, Tuo B S. Shaanxi’s oil-rich coal resources rank first in the country. Yulin can “rebuild a Daqing Oilfield”[J]. Shaanxi Coal, 2020, 39(1): 220-222. | |
3 | 煤炭资讯网. 推进富油煤合理开发利用[EB/OL]. [2022-03-24]. . |
Coal Information Network. Promoting the rational development and utilization of oil-rich coal[EB/OL]. [2022-03-24]. . | |
4 | 李勇, 闫伦靖, 李晓荣, 等. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183. |
Li Y, Yan L J, Li X R, et al. Study on the mechanism of acid/base catalyst on the release behavior of volatiles during low rank coal pyrolysis[J]. CIESC Journal, 2022, 73(3): 1173-1183. | |
5 | 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
Chen Z H, Gao S Q, Xu G W. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
6 | Deng X L, Deng J, He R Z, et al. Effects of Ba and Mg promoters on gas release from Fe catalyzed coal pyrolysis: effects of different precursors[J]. Fuel, 2022, 308: 121977. |
7 | Zhang C, Wu R C, Xu G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1): 236-244. |
8 | Wang D, Chen Z H, Li C M, et al. High-quality tar production from coal in an integrated reactor: rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel, 2021, 285: 119156. |
9 | Niu B, Liu R C, Zhang J T, et al. Effect of O2/CH4 atmosphere on tar production during coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105317. |
10 | Zhang X H, Zhu J L, Ban Y P, et al. Effect of Fe2O3 on the pyrolysis of two demineralized coal using in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 589-597. |
11 | Yang Z, Cao J P, Liu T L, et al. Controllable hollow HZSM-5 for high shape-selectivity to light aromatics from catalytic reforming of lignite pyrolysis volatiles[J]. Fuel, 2021, 294: 120427. |
12 | Liu T L, Cao J P, Zhao X Y, et al. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Processing Technology, 2017, 160: 19-26. |
13 | Han J Z, Liu X X, Yue J R, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy & Fuels, 2014, 28(8): 4934-4941. |
14 | Liguori F, Moreno-Marrodan C, Barbaro P. Metal nanoparticles immobilized on ion-exchange resins: a versatile and effective catalyst platform for sustainable chemistry[J]. Chinese Journal of Catalysis, 2015, 36(8): 1157-1169. |
15 | 施达. 磁性双功能催化剂的制备、结构表征及其甲醇催化转化反应性能研究[D]. 北京: 北京化工大学, 2017. |
Shi D. Preparation of magnetic difunctional catalysts, characterization of structure and their catalytic performance for methanol catalysis activity[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
16 | 姜少宁, 雷建民, 张敏刚, 等. 铁基非晶软磁合金的制备及磁性能研究[J]. 电子元件与材料, 2009, 28(7): 30-32. |
Jiang S N, Lei J M, Zhang M G, et al. Preparation and magnetic properties study of Fe-based amorphous soft magnetic alloys[J]. Electronic Components and Materials, 2009, 28(7): 30-32. | |
17 | 惠希东, 吕旷, 斯佳佳, 等. 高饱和磁化强度铁基非晶纳米晶软磁合金发展概况[J]. 工程科学学报, 2018, 40(10): 1158-1167. |
Hui X D, Lyu K, Si J J, et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density[J]. Chinese Journal of Engineering, 2018, 40(10): 1158-1167. | |
18 | Shakir I, Sarfraz M, Ali Z, et al. Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications[J]. Journal of Alloys and Compounds, 2016, 660: 450-455. |
19 | Oladipo A A, Ifebajo A O, Gazi M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2019, 243: 243-252. |
20 | Zhang E L, Wu J Y, Wang G S, et al. Efficient Fenton oxidation of Congo red dye by magnetic MgFe2O4 nanorods[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 4727-4732. |
21 | Rath C, Anand S, Das R P, et al. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite[J]. Journal of Applied Physics, 2002, 91(4): 2211-2215. |
22 | Roumaih K. Effect of temperature on the dielectric and magnetic properties of NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 core-shell[J]. Physica Scripta, 2021, 96(12): 125809. |
23 | Puspitarum D L, Hermawan A, Suharyadi E. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe2O4) nanoparticles[C/OL]// AIP Conference Proceedings. Semarang, Indonesia, 2016. |
24 | Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings—a state of the art review[J]. Metals and Materials International, 2021, 27(7): 1947-1968. |
25 | 张军兴, 周安宁, 闫宁, 等. 磁性Mo/HZSM-5@SiO2@Fe3O4催化剂可控制备及煤催化热解[J]. 煤炭学报, 2021, 46(6): 1985-1994. |
Zhang J X, Zhou A N, Yan N, et al. Controlled preparation and catalytic pyrolysis of coal over magnetic Mo/HZSM-5@SiO2@Fe3O4 catalyst[J]. Journal of China Coal Society, 2021, 46(6): 1985-1994. | |
26 | Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. Journal of the American Chemical Society, 2005, 127(25): 8916-8917. |
27 | 孙冬, 孙博, 裴燕, 等. 壳层厚度对骨架Fe@HZSM-5核壳催化剂费托合成催化性能的影响[J]. 化学学报, 2021, 79(6): 771-777. |
Sun D, Sun B, Pei Y, et al. Effect of shell thickness on skeletal Fe@HZSM-5 core-shell catalysts for Fischer-Tropsch synthesis[J]. Acta Chimica Sinica, 2021, 79(6): 771-777 | |
28 | Wang J, Liu X, Li L . et al. Performance improvement of Fe-6.5Si soft magnetic composites with hybrid phosphate-silica insulation coatings[J]. Journal of Central South University, 2021, 28(4): 1266-1278. |
29 | 濮思菁, 刘汝庚, 刘国柱, 等. 表面性质对HZSM-5分子筛涂层结构的影响[C]//第十七届全国分子筛学术大会. 宁夏, 2013. |
Pu S J, Liu R G, Liu G Z, et al. Effect of surface properties on the structure of HZSM-5 molecular sieve coating[C]//The 17th Chinese Zeolite Conference. Ningxia, 2013. | |
30 | Tang W S, Su Y, Li Q, et al. Superparamagnetic magnesium ferrite nano-adsorbent for effective arsenic (Ⅲ, Ⅴ) removal and easy magnetic separation[J]. Water Research: A Journal of the International Water Association, 2013, 47(11): 3624-3634. |
31 | 张淑平. CoFe2O4/SiO2材料的制备及其磁性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2005. |
Zhang S P. Preparation and magnetic properties of CoFe2O4/SiO2 materials[D]. Harbin: Harbin Institute of Technology, 2005. | |
32 | 李云龙, 周安宁, 石智伟, 等. 磁性Mo-Ni/HZSM-5@SiO2@Fe3O4催化剂对补连塔煤热解的影响[J]. 煤炭转化, 2021, 44(6): 26-33. |
Li Y L, Zhou A N, Shi Z W, et al. Effects of magnetic Mo-Ni/HZSM-5@SiO2@Fe3O4 catalyst on pyrolysis of bulianta coal[J]. Coal Conversion, 2021, 44(6): 26-33. | |
33 | 杨珍, 曹景沛, 朱陈, 等. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642. |
Yang Z, Cao J P, Zhu C, et al. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5[J]. CIESC Journal, 2021, 72(11): 5633-5642. | |
34 | Yousefi A, Almasi Kashi M, Afghahi S S S. Enhancement and recovery of magnetic exchange coupling properties in SrFe11AlO19@NiFe2O4 core-shell structure by multiple TiO2 and SiO2 nanolayer shells[J]. Journal of Magnetism and Magnetic Materials, 2021, 530: 167932. |
35 | 王俊丽, 吕婧, 李淑英, 等.基于贝壳衍生CaO的低阶煤催化热解特性及热解机理研究[J/OL]. 煤炭转化, 2022, [2022-04-20]. . |
Wang J L, Lyu J, Li S Y, et al. Catalytic pyrolysis characteristics and pyrolysis mechanism of low rank coal with shell-derived CaO[J/OL]. Coal Conversion,2022, [2022-04-20]. . | |
36 | 刘芸, 张源, 郭娅男, 等. 不同煤阶煤热解气化特性及机理研究[J]. 科学技术与工程, 2021, 21(18): 7672-7677. |
Liu Y, Zhang Y, Guo Y N, et al. Pyrolysis and gasification of coal with different ranks: characteristics and mechanism[J]. Science Technology and Engineering, 2021, 21(18): 7672-7677. | |
37 | 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 8-24. |
Liu Z Y. Radical chemistry in the pyrolysis of heavy organics[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 8-24. | |
38 | 刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报, 2016, 67(1): 1-5. |
Liu Z Y. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1): 1-5. | |
39 | 陈冠益, 杨会军, 姚金刚, 等. 两段式固定床芦竹催化热解实验研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(1): 59-64. |
Chen G Y, Yang H J, Yao J G, et al. Catalytic pyrolysis of arundo donax in a two-stage fixed-bed reactor[J]. Journal of Tianjin University (Science and Technology), 2017, 50(1): 59-64. | |
40 | Zhang Y, Zheng Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations[J]. Fuel, 2016, 183: 132-138. |
41 | 潘庆谊, 张中太. MgFe2O4尖晶石型固溶体的导电性和缺陷结构[J]. 无机材料学报, 1988, 3(3): 245-250. |
Pan Q Y, Zhang Z T. Defect structure and conduction in magnesium ferrite[J]. Journal of Inorganic Materials, 1988, 3(3): 245-250. | |
42 | Song Q, Zhao H Y, Chang S Q, et al. Study on the catalytic pyrolysis of coal volatiles over hematite for the production of light tar[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104927. |
43 | 杨英杰, 杨赫, 朱家龙, 等. 淖毛湖煤慢速热解过程官能团相互作用[J]. 化工学报, 2022, 73(2): 865-875. |
Yang Y J, Yang H, Zhu J L, et al. Interaction between functional groups during slow pyrolysis of Naomaohu coal[J]. CIESC Journal, 2022, 73(2): 865-875. | |
44 | 宋超, 叶茂, 刘中民. 甲醇制烯烃工艺催化剂再生过程的CFD-DEM模拟[J]. 中国粉体技术, 2020, 26(3): 39-45. |
Song C, Ye M, Liu Z M. CFD-DEM simulation of catalyst regeneration in methanol to olefins process[J]. China Powder Science and Technology, 2020, 26(3): 39-45. | |
45 | 任雪宇, 曹景沛, 赵小燕, 等. ZSM-5分子筛孔道调控及催化褐煤热解挥发物制轻质芳烃的研究[C]//第三届能源转化化学与技术研讨会. 厦门, 2018. |
Ren X Y, Cao J P, Zhao X Y, et al. Study on ZSM-5 molecular sieve pore channel regulation and catalytic pyrolysis of lignite to produce light aromatics[C]// The 3rd Energy Conversion Chemistry and Technology Symposium. Xiamen, 2018. |
[1] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[2] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[3] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[4] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[5] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[11] | Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials [J]. CIESC Journal, 2023, 74(6): 2296-2307. |
[12] | Yuhao CHEN, Xiaoping CHEN, Jiliang MA, Cai LIANG. Gaseous pollutants emissions from rotary kiln combustion of municipal sewage sludge [J]. CIESC Journal, 2023, 74(5): 2170-2178. |
[13] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[14] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[15] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||