CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3038-3044.DOI: 10.11949/0438-1157.20220219
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xueying NAI1,2(),Peng WU1,2,3,Yuan CHENG1,2,3,Jianfei XIAO1,2,3,Xin LIU1,2,Yaping DONG1,2
Received:
2022-02-23
Revised:
2022-05-30
Online:
2022-08-01
Published:
2022-07-05
Contact:
Xueying NAI
乃学瑛1,2(),吴鹏1,2,3,程远1,2,3,肖剑飞1,2,3,刘鑫1,2,董亚萍1,2
通讯作者:
乃学瑛
作者简介:
乃学瑛(1973—),女,博士,副研究员, 基金资助:
CLC Number:
Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires[J]. CIESC Journal, 2022, 73(7): 3038-3044.
乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
Add to citation manager EndNote|Ris|BibTeX
动力学模型 | 140℃ | 160℃ | 180℃ | 200℃ | ||||
---|---|---|---|---|---|---|---|---|
R2 | RSS | R2 | RSS | R2 | RSS | R2 | RSS | |
MA-1 | 0.9819 | 0.0022 | 0.9963 | 0.0005 | 0.9421 | 0.0101 | 0.9351 | 0.0102 |
MA-2 | 0.8984 | 0.0060 | 0.9100 | 0.0086 | 0.9790 | 0.0029 | 0.9555 | 0.0058 |
MA-3 | 0.5498 | 0.0201 | 0.6151 | 0.0279 | 0.9068 | 0.0077 | 0.9176 | 0.0081 |
MA-4 | 0.2961 | 0.0326 | 0.3584 | 0.0463 | 0.7054 | 0.0191 | 0.8086 | 0.0160 |
MB-1 | 0.4596 | 0.4900 | 0.6073 | 0.1061 | 0.4346 | 0.4464 | 0.4479 | 0.4680 |
MB-2 | 0.4600 | 0.4871 | 0.4405 | 0.5617 | 0.4345 | 0.4462 | 0.4481 | 0.4689 |
MB-3 | 0.4598 | 0.4947 | 0.4409 | 0.5656 | 0.4351 | 0.4474 | 0.4481 | 0.4716 |
MB-4 | 0.4598 | 0.4947 | 0.4409 | 0.5657 | 0.4349 | 0.4500 | 0.4481 | 0.4715 |
MC-1 | 0.8715 | 0.0059 | 0.8031 | 0.0145 | 0.9979 | 0.0002 | 0.9811 | 0.0021 |
MC-2 | 0.4780 | 0.0202 | 0.4832 | 0.0329 | 0.8782 | 0.0080 | 0.9446 | 0.0043 |
MC-3 | 0.2472 | 0.0323 | 0.2736 | 0.0502 | 0.6510 | 0.0201 | 0.8026 | 0.0122 |
MC-4 | 0.1311 | 0.0418 | 0.1644 | 0.0641 | 0.4218 | 0.0330 | 0.6209 | 0.0208 |
Table 1 Outcomes of three dynamic models fitting at different temperatures
动力学模型 | 140℃ | 160℃ | 180℃ | 200℃ | ||||
---|---|---|---|---|---|---|---|---|
R2 | RSS | R2 | RSS | R2 | RSS | R2 | RSS | |
MA-1 | 0.9819 | 0.0022 | 0.9963 | 0.0005 | 0.9421 | 0.0101 | 0.9351 | 0.0102 |
MA-2 | 0.8984 | 0.0060 | 0.9100 | 0.0086 | 0.9790 | 0.0029 | 0.9555 | 0.0058 |
MA-3 | 0.5498 | 0.0201 | 0.6151 | 0.0279 | 0.9068 | 0.0077 | 0.9176 | 0.0081 |
MA-4 | 0.2961 | 0.0326 | 0.3584 | 0.0463 | 0.7054 | 0.0191 | 0.8086 | 0.0160 |
MB-1 | 0.4596 | 0.4900 | 0.6073 | 0.1061 | 0.4346 | 0.4464 | 0.4479 | 0.4680 |
MB-2 | 0.4600 | 0.4871 | 0.4405 | 0.5617 | 0.4345 | 0.4462 | 0.4481 | 0.4689 |
MB-3 | 0.4598 | 0.4947 | 0.4409 | 0.5656 | 0.4351 | 0.4474 | 0.4481 | 0.4716 |
MB-4 | 0.4598 | 0.4947 | 0.4409 | 0.5657 | 0.4349 | 0.4500 | 0.4481 | 0.4715 |
MC-1 | 0.8715 | 0.0059 | 0.8031 | 0.0145 | 0.9979 | 0.0002 | 0.9811 | 0.0021 |
MC-2 | 0.4780 | 0.0202 | 0.4832 | 0.0329 | 0.8782 | 0.0080 | 0.9446 | 0.0043 |
MC-3 | 0.2472 | 0.0323 | 0.2736 | 0.0502 | 0.6510 | 0.0201 | 0.8026 | 0.0122 |
MC-4 | 0.1311 | 0.0418 | 0.1644 | 0.0641 | 0.4218 | 0.0330 | 0.6209 | 0.0208 |
Fig.5 Transmission electron microscopy and the corresponding IFFT images of MOS nanowires(a) transmission electron microscopy and bragg diffraction pattern of MOS nanowires; (b) the partial enlargement image of (a); (c)—(e) the lattice stripe of three different crystal plane group
1 | 岳涛, 高世扬, 朱黎霞, 等. 纳米晶MgSO4·5Mg(OH)2·3H2O合成与表征[J]. 高等学校化学学报, 2002, 23(9): 1790-1791. |
Yue T, Gao S Y, Zhu L X, et al. Synthesis and characterization of nanocrystalline materials MgSO4·5Mg(OH)2·3H2O[J]. Chemical Research in Chinese Universities, 2002, 23(9): 1790-1791. | |
2 | Gao C H, Li X G, Feng L J, et al. Preparation and thermal decomposition of 5Mg(OH)2·MgSO4·2H2O nanowhiskers[J]. Chemical Engineering Journal, 2009, 150(2/3): 551-554. |
3 | Dinnebier R E, Pannach M, Freyer D. 3Mg(OH)2·MgSO4·8H2O: a metastable phase in the system Mg(OH)2-MgSO4-H2O[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639(10): 1827-1833. |
4 | Tang Z L, Zhu C L, Fan F Y, et al. Green synthesis of the excellent magnesium oxysulfate whiskers under controlled reaction conditions[J]. Materials Chemistry and Physics, 2017, 195: 143-148. |
5 | 朱黎霞, 岳涛, 高世扬, 等. Mg(OH)2·2MgSO4·2H2O晶体的水热生长过程[J]. 物理化学学报, 2003, 19(3): 212-215. |
Zhu L X, Yue T, Gao S Y, et al. Hydrothermal crystal growth of Mg(OH)2·2MgSO4·2H2O[J]. Acta Physico-Chimica Sinica, 2003, 19(3): 212-215. | |
6 | Chen X, Qiu T. Natural rubber composites reinforced with basic magnesium oxysulfate whiskers: processing and ultraviolet resistance/flame retardant properties[J]. Polymer Testing, 2020, 81: 106271. |
7 | Jiang Y Z, Li Y B, Han Y X, et al. Study of mechanical properties of magnesium oxysulfate whisker/ABS composites[J]. Advanced Materials Research, 2010, 92: 241-246. |
8 | Chu Y J, Wang A G, Zhu Y C, et al. Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology[J]. Composites Part B: Engineering, 2021, 227: 109382. |
9 | Guo T, Wang H F, Yang H J, et al. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers[J]. Construction and Building Materials, 2017, 150: 844-850. |
10 | Zhang J J, Wu B, Tao S, et al. Hydrothermal synthesis of magnesium hydroxide sulfate hydrate whisker flame retardant[J]. Applied Mechanics and Materials, 2012, 174/175/176/177: 1034-1037. |
11 | Kim E S, Kim Y C, Park J, et al. Mechanical properties and flame retardancy of surface modified magnesium oxysulfate (5Mg(OH)2·MgSO4·3H2O) whisker for polypropylene composites[J]. Journal of Materiomics, 2018, 4(2): 149-156. |
12 | Wang J, Dai Y H, Yu Y, et al. Alignment controllable synthesis of MOF films: from Cu(OH)2 nanowire array to highly oriented Cu-MOF film[J]. Journal of Solid State Chemistry, 2022, 306: 122800. |
13 | Li D R, Xing H, Cao H Q, et al. Single nanowire integrated microfiber devices[J]. Results in Optics, 2021, 5: 100199. |
14 | Tan Y M, Kang Y T, Wang W W, et al. Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red[J]. Applied Surface Science, 2021, 569: 150970. |
15 | 肖剑飞, 乃学瑛, 苟生莲, 等. 邻苯二甲酸氢钾在制备碱式硫酸镁纳米线过程中的机理研究[J]. 无机材料学报, 2019, 34(11): 1181-1186. |
Xiao J F, Nai X Y, Gou S L, et al. Mechanism of potassium acid phthalate in stimulating formation of magnesium hydroxide sulfate hydrate nanowires[J]. Journal of Inorganic Materials, 2019, 34(11): 1181-1186. | |
16 | Sun X, Shi W, Xiang L, et al. Controllable synthesis of magnesium oxysulfate nanowires with different morphologies[J]. Nanoscale Research Letters, 2008, 3(10): 386-389. |
17 | Li J, Xiang L, Jin Y. Hydrothermal formation of magnesium oxysulfate whiskers in the presence of ethylenediaminetetraacetic acid[J]. Journal of Materials Science, 2006, 41(5): 1345-1348. |
18 | Kang K H, Lee D K. Synthesis of magnesium oxysulfate whiskers using triethanolamine as a morphology control agent[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2580-2583. |
19 | Zhou Z Z, Deng Y L. Solution synthesis of magnesium hydroxide sulfate hydrate nanobelts using sparingly soluble carbonate salts as supersaturation control agents[J]. Journal of Colloid and Interface Science, 2007, 316(1): 183-188. |
20 | 范天博, 周永红, 刘露萍, 等. 碱式硫酸镁晶须的生长机理分析[J]. 无机盐工业, 2017, 49(7): 20-23. |
Fan T B, Zhou Y H, Liu L P, et al. Analysis on growth mechanism of magnesium hydroxide sulfate hydrate whiskers[J]. Inorganic Chemicals Industry, 2017, 49(7): 20-23. | |
21 | 高传慧, 许军, 王传兴, 等. 碱式硫酸镁晶须的一步法水热合成及生长机理[J]. 硅酸盐学报, 2011, 39(5): 773-778. |
Gao C H, Xu J, Wang C X, et al. Hydrothermal synthesis and growth mechanism of magnesium hydroxide sulfate hydrate whiskers by the one-step procedure[J]. Journal of the Chinese Ceramic Society, 2011, 39(5): 773-778. | |
22 | Yan X X, Xu D L, Xue D F. SO4 2- ions direct the one-dimensional growth of 5Mg(OH)2·MgSO4·2H2O[J]. Acta Materialia, 2007, 55(17): 5747-5757. |
23 | 张少博, 方莉, 高雪焘, 等. 碱式硫酸镁晶须的可控制备及不同离子的影响机制[J]. 化工学报, 2021, 72(6): 3031-3040. |
Zhang S B, Fang L, Gao X T, et al. Controllable synthesis of magnesium hydroxide sulfate hydrate whiskers and effects of different ions[J]. CIESC Journal, 2021, 72(6): 3031-3040. | |
24 | 刘峰, 向兰, 金涌. 水热法制备碱式硫酸镁晶须的过程机制[J]. 无机材料学报, 2004, 19(4): 784-788. |
Liu F, Xiang L, Jin Y. Hydrothermal synthesis process of magnesium oxysulfate whiskers[J]. Journal of Inorganic Materials, 2004, 19(4): 784-788. | |
25 | 高传慧, 王传兴, 许军, 等. 碱式硫酸镁晶须水热过程结晶动力学研究[J]. 无机化学学报, 2012, 28(10): 2198-2204. |
Gao C H, Wang C X, Xu J, et al. Hydrothermal crystallization kinetics of magnesium hydroxide sulfate hydrate whiskers[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(10): 2198-2204. | |
26 | Nielsen A E. Kinetics of Precipitation[M]. Oxford: Pergamon Press, 1964: 29-65. |
27 | Sugimoto T, Kojima T. Formation mechanism of amorphous TiO2 spheres in organic solvents 2. Kinetics of precipitation[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18437-18444. |
28 | Topuz B, Şimşek D, Çiftçioğlu M. Preparation of monodisperse silica spheres and determination of their densification behaviour[J]. Ceramics International, 2015, 41(1): 43-52. |
29 | 苟国敬, 高世扬, 夏树屏, 等. 硼酸盐化学(ⅩⅩⅩⅤ ): MgO·3B2O3-18%MgSO4-H2O过饱和溶液0℃结晶动力学研究[J]. 盐湖研究, 2003, 11(1): 52-58. |
Gou G J, Gao S Y, Xia S P, et al. Chemistry of borate in salt lake brines(ⅩⅩⅩⅤ ): Study on crystallization kinetics of MgO·3B2O3-18%MgSO4-H2O supersaturated solution at 0℃[J]. Journal of Salt Lake Research, 2003, 11(1): 52-58. | |
30 | 彭姣玉, 张波, 陈婧, 等. 大柴旦富硼浓缩盐卤中硼酸镁盐稀释结晶动力学[J]. 无机化学学报, 2019, 35(10): 1821-1833. |
Peng J Y, Zhang B, Chen J, et al. Crystallization kinetics of Mg-borates precipitating from diluted boron-containing brine of da Qaidam saline lake[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(10): 1821-1833. | |
31 | 马玉涛, 夏树屏, 高世扬. 硼酸盐化学(ⅩⅩⅩⅠ): MgO·2B2O3-18%MgSO4-H2O过饱和溶液结晶动力学研究[J]. 高等学校化学学报, 2002, 23(1): 18-21. |
Ma Y T, Xia S P, Gao S Y. Chemistry of borate(ⅩⅩⅩⅠ): Crystallization kinetics of Mg-borates from MgO·2B2O3-18%MgSO4-H2O supersaturated solution[J]. Chemical Research in Chinese Universities, 2002, 23(1): 18-21. | |
32 | 李小平, 刘志宏, 高世扬, 等. 硼酸溶液中氯柱硼镁石的溶解及相转化动力学[J]. 物理化学学报, 2003, 19(7): 584-587. |
Li X P, Liu Z H, Gao S Y, et al. Kinetics of dissolution and transformation of chloropinnoite in H3BO3 aqueous solution[J]. Acta Physico-Chimica Sinica, 2003, 19(7): 584-587. | |
33 | 高世扬, 陈学安, 夏树屏. 盐卤硼酸盐化学 (): 2MgO·2B2O3·MgCl2·14H2O结晶动力学研究[J]. 化学学报, 1990, 48(11): 1049-1056. |
Cao S Y, Chen X A, Xia S P. Chemistry of borate in salt lake brine (): Study on crystallization kinetics of 2 MgO·2 B2O3·MgCl2·14H2O[J]. Acta Chimica Sinica, 1990, 48(11): 1049-1056. | |
34 | 高世扬, 宋彭生, 夏树屏 等. 盐湖化学: 新类型硼锂盐湖[M]. 北京: 科学出版社, 2007: 286. |
Gao S Y, Song P S, Xia S P, et al. Salt Lake Chemistry: A New Type Salt Lake of Borate and Lithium[M]. Beijing: Science Press, 2007: 286. | |
35 | 高世扬, 黄发清, 夏树屏. 盐卤硼酸盐化学(ⅩⅧ): MgO·3B2O3-MgCl2-H2O浓溶液中六硼酸镁盐结晶动力学[J]. 盐湖研究, 1993, 1(1): 38-48. |
Gao S Y, Huang F Q, XIA S P. Chemistry of borate in salt lake brine (ⅩⅧ): Study on crystallization kinetics of Mg-hexaborates from MgO·3B2O3-MgCl2-H2O concentrated solutions[J]. Journal of Salt Lake Research, 1993, 1(1): 38-48. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[7] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[8] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[9] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[10] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[11] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[12] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[13] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[14] | Qingyun YANG, Qingsong LI, Zeming CHEN, Jing DENG, Yuying LI, Fan YANG, Guoyuan CHEN, Guoxin LI. Degradation of methylparaben by UV/PMS, UV/PDS and UV/SPC process [J]. CIESC Journal, 2023, 74(3): 1322-1331. |
[15] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||