CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3597-3607.DOI: 10.11949/0438-1157.20220258

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor

Yuehui HOU1,2(), Xuan LIU1,2, Yingjiang LIAN1, Mei HAN1, Chaoqun YAO1(), Guangwen CHEN1()   

  1. 1.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-02-24 Revised:2022-06-09 Online:2022-09-06 Published:2022-08-05
  • Contact: Chaoqun YAO, Guangwen CHEN

超声微反应器内三硝基间苯三酚合成工艺研究

侯跃辉1,2(), 刘璇1,2, 廉应江1, 韩梅1, 尧超群1(), 陈光文1()   

  1. 1.中国科学院大连化学物理研究所,辽宁 大连 116023
    2.中国科学院大学,北京 100049
  • 通讯作者: 尧超群,陈光文
  • 作者简介:侯跃辉(1998—),女,硕士研究生,houyuehui@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(21991103);基础产品创新计划火炸药科研专项(20210311)

Abstract:

Trinitrophloroglucinol (TNPG) is an important pharmaceutical intermediate. It is usually synthesized from phloroglucinol (PG) by nitration in a batch reactor. This technology has the problems such as long reaction time, high energy consumption, and poor safety. To develop a novel technology for continuous synthesis is necessary. The process of PG nitration with mixed acid was investigated in an ultrasonic microreactor. By introducing ultrasound, the problems of low mixing of viscous fluids and solid-product clogging were solved, which enabled continuous synthesis of TNPG in much shorter reaction time. Additionally, through mass spectrometry analysis of reactant and product solutions, the reaction mechanism and reaction characteristics were revealed preliminarily. Under optimized conditions (PG concentration, 1.0 mol/L; molar ratio of nitric acid to PG, 4; temperature, 40℃), a yield of 80% and TNPG purity of more than 98% was obtained in reaction time of 6—10 min.

Key words: microchannel, microreactor, ultrasonic microreactor, nitration, mixing, process intensification

摘要:

三硝基间苯三酚(TNPG)是重要的医药中间体,通常以间苯三酚(PG)为原料,在间歇反应釜中经硝化合成。该工艺存在反应时间长、能耗高、安全性差等问题,亟需开展新型连续合成工艺研究。在超声微反应器中开展了PG混酸硝化过程研究,通过引入超声解决微通道中高黏流体混合差和固体产物易造成通道堵塞的难题,实现TNPG连续合成并大幅缩短了反应时间。此外,基于对原料和产物的质谱等分析,初步探讨了反应路径和行为特征。在优化工艺条件下(PG浓度:1.0 mol/L;硝酸与PG摩尔比:4;反应温度:40℃;停留时间6~10 min),TNPG收率可达80%,固体纯度大于98%。

关键词: 微通道, 微反应器, 超声微反应器, 硝化, 混合, 过程强化

CLC Number: