CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4025-4033.DOI: 10.11949/0438-1157.20220351
• Energy and environmental engineering • Previous Articles Next Articles
Xianlun XU1(), Yang QIAN2, Xingwang ZHANG1,2(), Lecheng LEI1,2
Received:
2022-03-09
Revised:
2022-06-09
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xingwang ZHANG
通讯作者:
张兴旺
作者简介:
许贤伦(1996—),男,硕士研究生,578394066@zju.edu.cn
基金资助:
CLC Number:
Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge[J]. CIESC Journal, 2022, 73(9): 4025-4033.
许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033.
Add to citation manager EndNote|Ris|BibTeX
电压/kV | k/min-1 | R2 | G/(mg/kJ) |
---|---|---|---|
10.6 | 0.022 | 0.91 | 0.83 |
11.8 | 0.028 | 0.93 | 0.46 |
12.0 | 0.033 | 0.94 | 0.23 |
12.6 | 0.046 | 0.97 | 0.15 |
13.6 | 0.054 | 0.94 | 0.11 |
Table 1 Kinetic parameters and G values of pyrene degradation at different discharge voltages
电压/kV | k/min-1 | R2 | G/(mg/kJ) |
---|---|---|---|
10.6 | 0.022 | 0.91 | 0.83 |
11.8 | 0.028 | 0.93 | 0.46 |
12.0 | 0.033 | 0.94 | 0.23 |
12.6 | 0.046 | 0.97 | 0.15 |
13.6 | 0.054 | 0.94 | 0.11 |
Fig.4 Effect of discharge frequencies(a) degradation rates at different frequencies; (b) kinetics at different frequencies; (c) the change of temperature with time at different frequencies; (d) volatilization of pyrene at different temperatures
频率/kHz | k/min-1 | R2 | G/(mg/kJ) |
---|---|---|---|
1.0 | 0.046 | 0.97 | 0.15 |
1.2 | 0.041 | 0.93 | 0.12 |
1.5 | 0.047 | 0.93 | 0.10 |
2.0 | 0.079 | 0.94 | 0.08 |
Table 2 Kinetics parameters and G values of pyrene degradation with different frequencies
频率/kHz | k/min-1 | R2 | G/(mg/kJ) |
---|---|---|---|
1.0 | 0.046 | 0.97 | 0.15 |
1.2 | 0.041 | 0.93 | 0.12 |
1.5 | 0.047 | 0.93 | 0.10 |
2.0 | 0.079 | 0.94 | 0.08 |
键 | 键长 | 原子 | 偏原子电荷 |
---|---|---|---|
C(1)-C(2) | 1.388 | C(1) | -0.097 |
C(2)-C(3) | 1.398 | C(2) | -0.162 |
C(3)-C(4) | 1.422 | C(3) | 0.147 |
C(4)-C(5) | 1.422 | C(4) | -0.021 |
C(5)-C(6) | 1.398 | C(5) | 0.147 |
C(3)-C(7) | 1.432 | C(6) | -0.162 |
C(7)-C(10) | 1.355 | C(7) | -0.178 |
C(10)-C(9) | 1.432 | C(8) | -0.021 |
C(9)-C(8) | 1.422 | C(9) | 0.147 |
C(8)-C(4) | 1.420 | C(10) | -0.178 |
C(9)-C(11) | 1.398 | C(11) | -0.162 |
C(11)-C(13) | 1.388 | C(13) | -0.097 |
C(13)-C(14) | 1.388 | C(14) | -0.162 |
C(14)-C(15) | 1.398 | C(15) | 0.147 |
C(15)-C(16) | 1.432 | C(16) | -0.178 |
C(16)-C(17) | 1.355 | C(17) | -0.178 |
C(17)-C(5) | 1.432 | H(12) | -0.102 |
C(11)-H(12) | 1.083 | H(18) | 0.097 |
C(13)-H(25) | 1.083 | H(19) | 0.097 |
C(14)-H(26) | 1.083 | H(20) | 0.097 |
C(16)-H(19) | 1.083 | H(21) | 0.106 |
C(17)-H(18) | 1.083 | H(22) | 0.102 |
C(6)-H(23) | 1.083 | H(23) | 0.102 |
C(1)-H(21) | 1.083 | H(24) | 0.097 |
C(2)-H(22) | 1.083 | H(25) | 0.106 |
C(7)-H(20) | 1.083 | H(26) | 0.102 |
C(10)-H(24) | 1.083 |
Table 3 Main bond lengths and atomic charges of Pyr
键 | 键长 | 原子 | 偏原子电荷 |
---|---|---|---|
C(1)-C(2) | 1.388 | C(1) | -0.097 |
C(2)-C(3) | 1.398 | C(2) | -0.162 |
C(3)-C(4) | 1.422 | C(3) | 0.147 |
C(4)-C(5) | 1.422 | C(4) | -0.021 |
C(5)-C(6) | 1.398 | C(5) | 0.147 |
C(3)-C(7) | 1.432 | C(6) | -0.162 |
C(7)-C(10) | 1.355 | C(7) | -0.178 |
C(10)-C(9) | 1.432 | C(8) | -0.021 |
C(9)-C(8) | 1.422 | C(9) | 0.147 |
C(8)-C(4) | 1.420 | C(10) | -0.178 |
C(9)-C(11) | 1.398 | C(11) | -0.162 |
C(11)-C(13) | 1.388 | C(13) | -0.097 |
C(13)-C(14) | 1.388 | C(14) | -0.162 |
C(14)-C(15) | 1.398 | C(15) | 0.147 |
C(15)-C(16) | 1.432 | C(16) | -0.178 |
C(16)-C(17) | 1.355 | C(17) | -0.178 |
C(17)-C(5) | 1.432 | H(12) | -0.102 |
C(11)-H(12) | 1.083 | H(18) | 0.097 |
C(13)-H(25) | 1.083 | H(19) | 0.097 |
C(14)-H(26) | 1.083 | H(20) | 0.097 |
C(16)-H(19) | 1.083 | H(21) | 0.106 |
C(17)-H(18) | 1.083 | H(22) | 0.102 |
C(6)-H(23) | 1.083 | H(23) | 0.102 |
C(1)-H(21) | 1.083 | H(24) | 0.097 |
C(2)-H(22) | 1.083 | H(25) | 0.106 |
C(7)-H(20) | 1.083 | H(26) | 0.102 |
C(10)-H(24) | 1.083 |
1 | Wilson S C, Jones K C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review[J]. Environmental Pollution, 1993, 81(3): 229-249. |
2 | Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15. |
3 | Dong T T T, Lee B K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea[J]. Chemosphere, 2009, 74(9): 1245-1253. |
4 | Li X J, Wang X, Ren Z J, et al. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil[J]. Chemosphere, 2015, 141: 62-70. |
5 | Kim K H, Jahan S A, Kabir E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71-80. |
6 | Waigi M G, Kang F X, Goikavi C, et al. Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review[J]. International Biodeterioration & Biodegradation, 2015, 104: 333-349. |
7 | Falciglia P P, de Guidi G, Catalfo A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J]. Chemical Engineering Journal, 2016, 296: 162-172. |
8 | Li G C, Xia X H, Yang Z F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China[J]. Environmental Pollution, 2006, 144(3): 985-993. |
9 | Chen L G, Ran Y, Xing B S, et al. Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China[J]. Chemosphere, 2005, 60(7): 879-890. |
10 | Feng C L, Xia X H, Shen Z Y, et al. Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China[J]. Environmental Monitoring and Assessment, 2007, 133(1/2/3): 447-458. |
11 | Bayat B, Sari B. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 763-769. |
12 | Jin Y S, Jiang T, Yang Y B, et al. Removal of phosphorus from iron ores by chemical leaching[J]. Journal of Central South University of Technology, 2006, 13(6): 673-677. |
13 | Schmidt U. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals[J]. Journal of Environmental Quality, 2003, 32(6): 1939-1954. |
14 | Zhao C, Dong Y, Feng Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. |
15 | Vinegar H J, Stegemeier G L. Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system: US6485232[P]. 2002-11-26. |
16 | 吴作军, 卢滇楠, 张敏莲, 等. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望[J]. 化工进展, 2010, 29(5): 789-795. |
Wu Z J, Lu D N, Zhang M L, et al. Progress in applications of microbiological molecular ecology in bioremediation of petroleum contaminated soil[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 789-795. | |
17 | Kulik N, Goi A, Trapido M, et al. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil[J]. Journal of Environmental Management, 2006, 78(4): 382-391. |
18 | Kang N, Hua I. Enhanced chemical oxidation of aromatic hydrocarbons in soil systems[J]. Chemosphere, 2005, 61(7): 909-922. |
19 | Oonnittan A, Shrestha R A, Sillanpää M. Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation[J]. Journal of Hazardous Materials, 2009, 162(2/3): 989-993. |
20 | Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59. |
21 | 严琼, 杨俊. 综述高级氧化技术在废水处理中的应用[J]. 净水技术, 2013, 32(3): 5-7. |
Yan Q, Yang J. An overview of application for advanced oxidation processes in wastewater treatment[J]. Water Purification Technology, 2013, 32(3): 5-7. | |
22 | Gao Y Z, Gai K, Lu Q F, et al. Plasma induced degradation of aniline in aqueous solution[J]. Plasma Science and Technology, 2002, 4(2): 1243-1251. |
23 | Ren J Y, Zhen Y Z, Wang J, et al. Catalytic degradation of caffeic acid by DBD plasma and Mn doped cobalt oxyhydroxide catalyst[J]. Chemosphere, 2021, 275: 130101. |
24 | 叶凯, 刘香华, 姜月, 等. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
Ye K, Liu X H, Jiang Y, et al. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715. | |
25 | Du Z H, Lin X. Research progress in application of low temperature plasma technology for wastewater treatment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 512(1): 012031. |
26 | 战佳勋, 张艾, 李振宇, 等. 低温等离子体降解土壤中的石油类污染物的研究[C]// 中国土壤学会土壤环境专业委员会第二十次会议暨农田土壤污染与修复研讨会. 2018: 184-185. |
Zhan J X, Zhang A, Li Z Y, et al. Study on degradation of petroleum pollutants in soil by low temperature plasma[C]// The 20th Meeting of Soil Environment Professional Committee of Chinese Soil Society and Seminar on Farmland Soil Pollution and Remediation. 2018: 184-185. | |
27 | Abbas Y, Lu W J, Dai H X, et al. Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil with double dielectric barrier discharge plasma technology: influencing parameters[J]. Chemical Engineering Journal, 2020, 394: 124858. |
28 | Mu R W, Liu Y N, Li R, et al. Remediation of pyrene-contaminated soil by active species generated from flat-plate dielectric barrier discharge[J]. Chemical Engineering Journal, 2016, 296: 356-365. |
29 | Sun B, Sato M, Clements J S. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution[J]. Environmental Science & Technology, 2000, 34(3): 509-513. |
30 | 柯梁建, 卢秀圆, 王兴权, 等. 介质阻挡放电低温等离子体降解水中吡虫啉、啶虫脒和三唑磷的研究[J]. 食品工业科技, 2022, 43(7): 262-272. |
Ke L J, Lu X Y, Wang X Q, et al. Degradation of imidacloprid, acetamiprid and triazophos in aqueous solution by dielectric barrier discharge low-temperature plasma[J]. Science and Technology of Food Industry, 2022, 43(7): 262-272. | |
31 | 于政, 李杰, 姜楠, 等. 淋土式介质阻挡放电等离子体修复阿特拉津污染土壤[J]. 环境工程, 2021, 39(12): 212-219. |
Yu Z, Li J, Jiang N, et al. Remediation of atrazine contaminated soil by dielectric barrier discharge plasma with soil sprinkle mode[J]. Environmental Engineering, 2021, 39(12): 212-219. | |
32 | Zhang H, Ma D Y, Qiu R L, et al. Non-thermal plasma technology for organic contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2017, 313: 157-170. |
33 | Wang T C, Lu N, Li J, et al. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge[J]. Environmental Science & Technology, 2011, 45(21): 9301-9307. |
34 | Czaplicka M, Kaczmarczyk B. Infrared study of chlorophenols and products of their photodegradation[J]. Talanta, 2006, 70(5): 940-949. |
35 | Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39(12): 1809-1820. |
36 | Park D P, Davis K, Gilani S, et al. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield[J]. Current Applied Physics, 2013, 13: S19-S29. |
37 | San N, Hatipoğlu A, Koçtürk G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 146(3): 189-197. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[3] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[4] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[5] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[6] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[7] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[8] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
[9] | Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping [J]. CIESC Journal, 2022, 73(4): 1743-1753. |
[10] | Xiaoxi WANG, Xiaoyan LI, Baowei WANG. Decomposition of carbon dioxide via dielectric barrier discharge microplasma [J]. CIESC Journal, 2022, 73(3): 1343-1350. |
[11] | Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jinzhu WANG. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst [J]. CIESC Journal, 2022, 73(10): 4472-4483. |
[12] | Xiaosong HOU, Chenxing LIU, Ailing REN, Bin GUO, Yuanming GUO. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing [J]. CIESC Journal, 2022, 73(10): 4692-4706. |
[13] | Zhenlin ZHU, Songlin WANG, Bingxue JIANG, Jiaxu LI, Wei DENG, Haiqiang WU, Xuan YANG, Pingwei LIU, Wenjun WANG. Study on biodegradation of polyesters and their evaluation methods [J]. CIESC Journal, 2022, 73(1): 110-121. |
[14] | Qianhao WANG, Lu ZHAO, Fulin SUN, Kegong FANG. Production of syngas derived from H2S-CO2via synergy of ZSM-5 catalyst and non-thermal plasma [J]. CIESC Journal, 2022, 73(1): 255-265. |
[15] | ZHU Xiaobing, LI Jiajia, LI Yining, YANG Hongyue, LI Xiaosong, LIU Jinglin. Oxygen evolution reaction over manganese oxides and the electrode-solution interface [J]. CIESC Journal, 2021, 72(S1): 398-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||