CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4015-4024.DOI: 10.11949/0438-1157.20220461
• Biochemical engineering and technology • Previous Articles Next Articles
Xue LIU1,2(), Lijuan ZHANG1,2(), Guangrong ZHAO1,2()
Received:
2022-03-30
Revised:
2022-05-30
Online:
2022-10-09
Published:
2022-09-05
Contact:
Guangrong ZHAO
通讯作者:
赵广荣
作者简介:
刘雪(1992—),女,博士研究生,1208644284@qq.com基金资助:
CLC Number:
Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein[J]. CIESC Journal, 2022, 73(9): 4015-4024.
刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024.
Add to citation manager EndNote|Ris|BibTeX
Strains/plasmids | Characteristics | Source |
---|---|---|
strains | ||
LTR3 | E. coli BL21(DE3) ΔptsG ΔtyrR ΔpheA::KanR | [ |
LCA2G | LTR3 with pLCA1G and pYBT5C | [ |
LLQ4 | BL21(DE3) with pLNR12 and pLLQ4 | this study |
LLQ4R | BL21(DE3) with pLNR12R and pLLQ4 | this study |
LLQ5 | LTR3 with pLNR13 and pLLQ4 | this study |
LDZ8 | LTR3 with pLDZ1 and pLGN37 and pLLQ4 | this study |
LDZ10 | BL21(DE3) with pLLQ4R, pLGN37K, and pLDZ4 | this study |
LDZ11 | BL21(DE3) with pLGN37 and pLDZ3 | this study |
LDZ12 | LTR3 with pLGN37 and pLDZ5 | this study |
plasmids | ||
pETDuet-1 | pET ori with PT7; AmpR | Novagen |
pCDFDuet-1 | pCDF ori with PT7; SmR | Novagen |
pACYCDuet-1 | pACYC ori with PT7; CmR | Novagen |
pYBT5 | pMB1 ori with PlacUV5 -aroGfbr -tyrAfbr -aroE, Ptrc-ppsA-tktA-glk; AmpR | [ |
pYBT5C | pYBT5 with change of AmpR to CmR | [ |
pLCA1G | pCDF-FjTAL | [ |
pLCA1G | pCDF-FjTAL-EGFP | [ |
pLNR12 | pCDFDuet-1 with At4CL, PhCHIL | [ |
pLNR12R | pCDFDuet-1 with At4CL, PhCHIL, and mCherry | [ |
pLNR13 | pCDFDuet-1 with FjTAL, At4CL and PhCHIL | [ |
pLLQ4 | pETDuet-1 with ErCHI and EbCHS-(GGGGGS)3-MsCHR | our lab |
pLLQ4R | pETDuet-1 with ErCHI and EbCHS-(GGGGGS)3-MsCHR and mCherry | this study |
pLGN37 | pACYCDuet-1 with 17A-LjtCPR | [ |
pLGN37K | pLGN37 with exchange of CmR to KanR | [ |
pLDZ1 | pCDFDuet-1 with PhCHIL, GmHID, FjTAL, At4CL and KKK-GetIFS | our lab |
pLDZ3 | pCDFDuet-1 with KKK-GetIFS and GmHID | this study |
pLDZ4 | pCDFDuet-1 with PhCHIL, GmHID, At4CL and KKK-GetIFS | our lab |
pLDZ5 | pCDFDuet-1 with FjTAL, KKK-GetIFS, GmHID | this study |
Table 1 Strains and plasmids used in this study
Strains/plasmids | Characteristics | Source |
---|---|---|
strains | ||
LTR3 | E. coli BL21(DE3) ΔptsG ΔtyrR ΔpheA::KanR | [ |
LCA2G | LTR3 with pLCA1G and pYBT5C | [ |
LLQ4 | BL21(DE3) with pLNR12 and pLLQ4 | this study |
LLQ4R | BL21(DE3) with pLNR12R and pLLQ4 | this study |
LLQ5 | LTR3 with pLNR13 and pLLQ4 | this study |
LDZ8 | LTR3 with pLDZ1 and pLGN37 and pLLQ4 | this study |
LDZ10 | BL21(DE3) with pLLQ4R, pLGN37K, and pLDZ4 | this study |
LDZ11 | BL21(DE3) with pLGN37 and pLDZ3 | this study |
LDZ12 | LTR3 with pLGN37 and pLDZ5 | this study |
plasmids | ||
pETDuet-1 | pET ori with PT7; AmpR | Novagen |
pCDFDuet-1 | pCDF ori with PT7; SmR | Novagen |
pACYCDuet-1 | pACYC ori with PT7; CmR | Novagen |
pYBT5 | pMB1 ori with PlacUV5 -aroGfbr -tyrAfbr -aroE, Ptrc-ppsA-tktA-glk; AmpR | [ |
pYBT5C | pYBT5 with change of AmpR to CmR | [ |
pLCA1G | pCDF-FjTAL | [ |
pLCA1G | pCDF-FjTAL-EGFP | [ |
pLNR12 | pCDFDuet-1 with At4CL, PhCHIL | [ |
pLNR12R | pCDFDuet-1 with At4CL, PhCHIL, and mCherry | [ |
pLNR13 | pCDFDuet-1 with FjTAL, At4CL and PhCHIL | [ |
pLLQ4 | pETDuet-1 with ErCHI and EbCHS-(GGGGGS)3-MsCHR | our lab |
pLLQ4R | pETDuet-1 with ErCHI and EbCHS-(GGGGGS)3-MsCHR and mCherry | this study |
pLGN37 | pACYCDuet-1 with 17A-LjtCPR | [ |
pLGN37K | pLGN37 with exchange of CmR to KanR | [ |
pLDZ1 | pCDFDuet-1 with PhCHIL, GmHID, FjTAL, At4CL and KKK-GetIFS | our lab |
pLDZ3 | pCDFDuet-1 with KKK-GetIFS and GmHID | this study |
pLDZ4 | pCDFDuet-1 with PhCHIL, GmHID, At4CL and KKK-GetIFS | our lab |
pLDZ5 | pCDFDuet-1 with FjTAL, KKK-GetIFS, GmHID | this study |
Primers | Sequences(5'-3') |
---|---|
Cherry-CDF-F | GTCATCGTGGCCGGATCTTGCGCAAAAAACCCCTCAAGACC |
Cherry-CDF-R | TTCGTTCAAGCCGAGGGGCCTCGAACAGAAAGTAATCGTA |
CDF-Cherry-F | ATACGATTACTTTCTGTTCGAGGCCCCTCGGCTTGAACGAA |
CDF-Cherry-R | GGTCTTGAGGGGTTTTTTGCGCAAGATCCGGCCACGATGA |
(KKK) GetIFS-F | GTATAAGAAGGAGATATACATATGGCGAAGAAGAAGCTGAGCGCAAAAAGCAAAAG |
GetIFS-R | CAGCGGTTTCTTTACCAGACTCGAGTTAAGAAGAAAACAGTTTCG |
GmHID-F | CATGCCATGGCCAAAGAAATCGTTAAAG |
GmHID-R | CCCAAGCTTTTAAACCAGAAAGCTGGCC |
BglII-HID-F | CAGATCTCATGGCCAAAGAAATCGTTAAAGA |
XhoI-IFS-R | GACTCGAGTTAAGAAGAAAACAGTTTCGG |
Table 2 Primers used in this study
Primers | Sequences(5'-3') |
---|---|
Cherry-CDF-F | GTCATCGTGGCCGGATCTTGCGCAAAAAACCCCTCAAGACC |
Cherry-CDF-R | TTCGTTCAAGCCGAGGGGCCTCGAACAGAAAGTAATCGTA |
CDF-Cherry-F | ATACGATTACTTTCTGTTCGAGGCCCCTCGGCTTGAACGAA |
CDF-Cherry-R | GGTCTTGAGGGGTTTTTTGCGCAAGATCCGGCCACGATGA |
(KKK) GetIFS-F | GTATAAGAAGGAGATATACATATGGCGAAGAAGAAGCTGAGCGCAAAAAGCAAAAG |
GetIFS-R | CAGCGGTTTCTTTACCAGACTCGAGTTAAGAAGAAAACAGTTTCG |
GmHID-F | CATGCCATGGCCAAAGAAATCGTTAAAG |
GmHID-R | CCCAAGCTTTTAAACCAGAAAGCTGGCC |
BglII-HID-F | CAGATCTCATGGCCAAAGAAATCGTTAAAGA |
XhoI-IFS-R | GACTCGAGTTAAGAAGAAAACAGTTTCGG |
1 | Křížová L, Dadáková K, Kašparovská J, et al. Isoflavones[J]. Molecules, 2019, 24(6): 1076. |
2 | Ahmed T, Javed S, Tariq A, et al. Daidzein and its effects on brain[J]. Current Medicinal Chemistry, 2017, 24(4): 365-375. |
3 | Meng H Z, Fu G H, Shen J, et al. Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 3140680. |
4 | Yu Z Y, Yang L, Deng S, et al. Daidzein ameliorates LPS-induced hepatocyte injury by inhibiting inflammation and oxidative stress[J]. European Journal of Pharmacology, 2020, 885: 173399. |
5 | Blicharski T, Oniszczuk A. Extraction methods for the isolation of isoflavonoids from plant material[J]. Open Chemistry, 2017, 15(1): 34-45. |
6 | Sajid M, Stone S R, Kaur P. Recent advances in heterologous synthesis paving way for future green-modular bioindustries: a review with special reference to isoflavonoids[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 673270. |
7 | Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
8 | Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. |
9 | Waki T, Mameda R, Nakano T, et al. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity[J]. Nature Communications, 2020, 11: 870. |
10 | Liu X, Li L L, Zhao G R. Systems metabolic engineering of Escherichia coli coculture for de novo production of genistein[J]. ACS Synthetic Biology, 2022, 11(5): 1746-1757. |
11 | Liu Q L, Liu Y, Li G, et al. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories[J]. Nature Communications, 2021, 12: 6085. |
12 | Stahlhut S G, Siedler S, Malla S, et al. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli [J]. Metabolic Engineering, 2015, 31: 84-93. |
13 | Yan Y J, Huang L X, Koffas M A G. Biosynthesis of 5-deoxyflavanones in microorganisms[J]. Biotechnology Journal, 2007, 2(10): 1250-1262. |
14 | Zhou K, Qiao K J, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383. |
15 | Chen Z Y, Sun X X, Li Y, et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols[J]. Metabolic Engineering, 2017, 39: 102-109. |
16 | Jones J A, Wang X. Use of bacterial co-cultures for the efficient production of chemicals[J]. Current Opinion in Biotechnology, 2018, 53: 33-38. |
17 | Sgobba E, Stumpf A K, Vortmann M, et al. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose[J]. Bioresource Technology, 2018, 260: 302-310. |
18 | Li S Z, Liang C N, Liu G X, et al. De novo biosynthesis of chlorogenic acid using an artificial microbial community[J]. Journal of Agricultural and Food Chemistry, 2021, 69(9): 2816-2825. |
19 | Liu X, Liu J C, Lei D W, et al. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli [J]. Chemical Engineering Science, 2022, 247: 116931. |
20 | Yao Y F, Wang C S, Qiao J J, et al. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway[J]. Metabolic Engineering, 2013, 19: 79-87. |
21 | Rodriguez A, Strucko T, Stahlhut S G, et al. Metabolic engineering of yeast for fermentative production of flavonoids[J]. Bioresource Technology, 2017, 245: 1645-1654. |
22 | Akram M, Rasool A, An T, et al. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production[J]. Chemical Engineering Science, 2021, 230: 116177. |
23 | Santos C N S, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose[J]. Metabolic Engineering, 2011, 13(4): 392-400. |
24 | Chemler J A, Lim C G, Daiss J L, et al. A versatile microbial system for biosynthesis of novel polyphenols with altered estrogen receptor binding activity[J]. Chemistry & Biology, 2010, 17(4): 392-401. |
25 | Wang X N, Li Z H, Policarpio L, et al. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering[J]. Applied Microbiology and Biotechnology, 2020, 104(11): 4849-4861. |
26 | Qiu Z T, Liu X, Li J, et al. Metabolic division in an Escherichia coli coculture system for efficient production of kaempferide[J]. ACS Synthetic Biology, 2022, 11(3): 1213-1227. |
27 | Hom E F Y, Murray A W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism[J]. Science, 2014, 345(6192): 94-98. |
28 | Li Z H, Wang X N, Zhang H R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering[J]. Metabolic Engineering, 2019, 54: 1-11. |
29 | Li X L, Zhou Z, Li W N, et al. Design of stable and self-regulated microbial consortia for chemical synthesis[J]. Nature Communications, 2022, 13: 1554. |
30 | Jones J A, Vernacchio V R, Collins S M, et al. Complete biosynthesis of anthocyanins using E. coli polycultures[J]. mBio, 2017, 8(3): e00621-e00617. |
31 | Wu S, Ma X Q, Zhou A Q, et al. Establishment of strigolactone-producing bacterium-yeast consortium[J]. Science Advances, 2021, 7(38): eabh4048. |
32 | Wu S B, Xue Y T, Yang S J, et al. Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation[J]. Metabolic Engineering, 2021, 67: 186-197. |
33 | Mameda R, Waki T, Kawai Y, et al. Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase[J]. The Plant Journal, 2018, 96(1): 56-74. |
34 | Gul K, Singh A K, Jabeen R. Nutraceuticals and functional foods: the foods for the future world[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(16): 2617-2627. |
35 | Wang X, Li C F, Zhou C, et al. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata [J]. The Plant Journal, 2017, 90(3): 535-546. |
36 | Liu X, Li X B, Jiang J L, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides[J]. Metabolic Engineering, 2018, 47: 243-253. |
37 | Zhang H R, Wang X N. Modular co-culture engineering, a new approach for metabolic engineering[J]. Metabolic Engineering, 2016, 37: 114-121. |
[1] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[2] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[3] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[4] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[5] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[6] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[7] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[8] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[9] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
[10] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
[11] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[12] | WANG Lian, WU Di, ZHOU Jingwen. Research progress of lignans biosynthesis and their microbial production [J]. CIESC Journal, 2021, 72(1): 320-333. |
[13] | Lei QIN, Jie YU, Xiaoyu NING, Wentao SUN, Chun LI. Synthetic biological system construction and green intelligent biological manufacturing [J]. CIESC Journal, 2020, 71(9): 3979-3994. |
[14] | Hutao GAO, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Metabolic engineering strategies in biosynthesis of amino acids and their derivatives [J]. CIESC Journal, 2020, 71(9): 4058-4070. |
[15] | Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches [J]. CIESC Journal, 2020, 71(9): 3950-3962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||