CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4255-4267.DOI: 10.11949/0438-1157.20220599
• Reviews and monographs • Previous Articles Next Articles
Bo ZHANG(), Xiaofei CHEN, Siyao ZHAO, Xin ZHOU(
)
Received:
2022-04-28
Revised:
2022-07-19
Online:
2022-11-02
Published:
2022-10-05
Contact:
Xin ZHOU
通讯作者:
周欣
作者简介:
张博(2000—),男,硕士研究生,201830380205@mail.scut.edu.cn
基金资助:
CLC Number:
Bo ZHANG, Xiaofei CHEN, Siyao ZHAO, Xin ZHOU. Progress of ethane-selective adsorbents for efficient purification of ethylene[J]. CIESC Journal, 2022, 73(10): 4255-4267.
张博, 陈晓霏, 赵思尧, 周欣. 高效分离乙烷/乙烯的烷烃选择性吸附剂研究进展[J]. 化工学报, 2022, 73(10): 4255-4267.
Fig.7 Three modules of pacs MOFs including three kinds of dicarboxylate ligand, three kinds of pore-partitioning agent and four kinds of metal trimers (a); Density distribution of C2H6 molecules mass center within Co2V-bdc-tpt under different pressures from GCMC simulations (b)[62]
乙烷选择性吸附剂 | 条件 | 乙烷吸附量/(mmol/g) | 乙烯吸附量/(mmol/g) | IAST选择性 | 文献 |
---|---|---|---|---|---|
UiO-67-(NH2)2 | 296 K,1 bar | 5.32 | 4.32 | 1.7 | [ |
CAU-3-NDCA | 298 K,1 bar | 2.42 | 1.61 | 1.56 | [ |
MOF-841 | 298 K,1 bar | 4.70 | 3.40 | 1.6 | [ |
Ni(BODC)(TED) | 298 K,1 bar | 3.36 | 2.61 | 1.83① | [ |
LIFM-63 | 298 K,1 bar | 3.0 | 2.1 | 1.6 | [ |
MIL-53-BDC | 298 K,1 bar | 2.93 | 2.78 | 1.70 | [ |
MIL-53-NDCA | 298 K,1 bar | 4.24 | 3.12 | 1.53 | [ |
MIL-53-BPDC | 298 K,1 bar | 2.97 | 2.07 | 1.47 | [ |
ZJNU-115 | 298 K,1 atm | 4.20 | 3.75 | 1.56 | [ |
BUT-10 | 298 K,1 bar | 4.76 | 3.56 | 1.72 | [ |
ScBPDC | 298 K,1 bar | 3.42 | 2.41 | 1.7② | [ |
ZJNU-7 | 298 K,1 bar | 4.13 | 3.80 | 1.56 | [ |
Co(AIN)2 | 298 K,1 bar | 3.16 | 3.14 | 2.96 | [ |
FMOF-2 | 303 K,5 kPa | 0.90 | 0.60 | 3.3③ | [ |
CPM-80-Zn | 298 K,1 bar | 4.77 | 4.24 | 1.8 | [ |
CPM-81-Co | 298 K,1 bar | 5.51 | 5.07 | 1.8 | [ |
SNNU-40 | 298 K,1 bar | 7.54 | 4.91 | 1.57 | [ |
MIL-125 | 298 K,1 bar | 4.83 | 3.98 | 1.43 | [ |
MUV-11 | 298 K,1 bar | 1.83 | 1.72 | 1.53 | [ |
ZSTU-2 | 298 K,1 bar | 2.73 | 2.35 | 1.62 | [ |
DMOF | 298 K,1 bar | 2.79④ | 2.08④ | 1.51 | [ |
DMOF-DM | 298 K,1 bar | 4.03④ | 3.11④ | 1.70 | [ |
DMOF-TM | 298 K,1 bar | 5.31④ | 4.99④ | 1.88 | [ |
MOF-525 | 298 K,1 bar | 2.77 | 2.10 | 1.24 | [ |
MOF-525(Co) | 298 K,1 bar | 2.24⑤ | 1.91⑤ | 1.11 | [ |
UPC-612 | 298 K,1 bar | 3.57 | 2.69 | 1.4 | [ |
UPC-613 | 298 K,1 bar | 2.56 | 2.25 | 1.47 | [ |
JXNU-9 | 298 K,1 atm | 3.61 | 2.45 | 1.53 | [ |
PCN-250(Fe2Zn) | 298 K,1 bar | 5.95 | 5.42 | 1.7① | [ |
PCN-250(Fe) | 298 K,1 bar | 6.00 | 5.00 | 1.6① | [ |
NUM-9 | 298 K,1 bar | 2.48 | 2.30 | 1.61 | [ |
MOF-545 | 298 K,1 bar | 3.12 | 2.57 | 1.31 | [ |
ZJU-HOF-10(sc) | 296 K,1 bar | 2.19 | 1.88 | 1.9 | [ |
ZJU-HOF-10(v) | 296 K,1 bar | 0.64 | 0.58 | 1.54 | [ |
ZJU-HOF-1 | 298 K,1 bar | 4.87 | 3.87 | 2.25 | [ |
CAC-900-3 | 298 K,1 bar | 6.02 | 4.86 | 2.6 | [ |
AAC-800-3 | 298 K,1 bar | 5.98 | 4.68 | 2.2 | [ |
WAC-800-3 | 298 K,1 bar | 6.09 | 4.96 | 1.8 | [ |
SIFSIX-CAC-800-3 | 298 K,1 bar | 5.02 | 4.14 | 1.4 | [ |
DUT-8(Ni) | 303 K,1 bar | 3.96 | 2.27 | 1.65 | [ |
RT-Cu(Qc)2 | 298 K,1 bar | 2.04 | 0.56 | 4.1 | [ |
Ca(H2tcpb) | 298 K,1 bar | 2.78 | 2.67 | 1.75 | [ |
NIIC-20-Bu | 298 K,1 bar | 2.50 | 1.40 | 15.4 | [ |
ZJU-120a | 298 K,1 bar | 4.91 | 3.93 | 2.74 | [ |
NUM-7a | 298 K,1 bar | 3.04 | 2.68 | 1.76 | [ |
Table 1 Comparison of the adsorption performances of ethane selective adsorbents in recent years
乙烷选择性吸附剂 | 条件 | 乙烷吸附量/(mmol/g) | 乙烯吸附量/(mmol/g) | IAST选择性 | 文献 |
---|---|---|---|---|---|
UiO-67-(NH2)2 | 296 K,1 bar | 5.32 | 4.32 | 1.7 | [ |
CAU-3-NDCA | 298 K,1 bar | 2.42 | 1.61 | 1.56 | [ |
MOF-841 | 298 K,1 bar | 4.70 | 3.40 | 1.6 | [ |
Ni(BODC)(TED) | 298 K,1 bar | 3.36 | 2.61 | 1.83① | [ |
LIFM-63 | 298 K,1 bar | 3.0 | 2.1 | 1.6 | [ |
MIL-53-BDC | 298 K,1 bar | 2.93 | 2.78 | 1.70 | [ |
MIL-53-NDCA | 298 K,1 bar | 4.24 | 3.12 | 1.53 | [ |
MIL-53-BPDC | 298 K,1 bar | 2.97 | 2.07 | 1.47 | [ |
ZJNU-115 | 298 K,1 atm | 4.20 | 3.75 | 1.56 | [ |
BUT-10 | 298 K,1 bar | 4.76 | 3.56 | 1.72 | [ |
ScBPDC | 298 K,1 bar | 3.42 | 2.41 | 1.7② | [ |
ZJNU-7 | 298 K,1 bar | 4.13 | 3.80 | 1.56 | [ |
Co(AIN)2 | 298 K,1 bar | 3.16 | 3.14 | 2.96 | [ |
FMOF-2 | 303 K,5 kPa | 0.90 | 0.60 | 3.3③ | [ |
CPM-80-Zn | 298 K,1 bar | 4.77 | 4.24 | 1.8 | [ |
CPM-81-Co | 298 K,1 bar | 5.51 | 5.07 | 1.8 | [ |
SNNU-40 | 298 K,1 bar | 7.54 | 4.91 | 1.57 | [ |
MIL-125 | 298 K,1 bar | 4.83 | 3.98 | 1.43 | [ |
MUV-11 | 298 K,1 bar | 1.83 | 1.72 | 1.53 | [ |
ZSTU-2 | 298 K,1 bar | 2.73 | 2.35 | 1.62 | [ |
DMOF | 298 K,1 bar | 2.79④ | 2.08④ | 1.51 | [ |
DMOF-DM | 298 K,1 bar | 4.03④ | 3.11④ | 1.70 | [ |
DMOF-TM | 298 K,1 bar | 5.31④ | 4.99④ | 1.88 | [ |
MOF-525 | 298 K,1 bar | 2.77 | 2.10 | 1.24 | [ |
MOF-525(Co) | 298 K,1 bar | 2.24⑤ | 1.91⑤ | 1.11 | [ |
UPC-612 | 298 K,1 bar | 3.57 | 2.69 | 1.4 | [ |
UPC-613 | 298 K,1 bar | 2.56 | 2.25 | 1.47 | [ |
JXNU-9 | 298 K,1 atm | 3.61 | 2.45 | 1.53 | [ |
PCN-250(Fe2Zn) | 298 K,1 bar | 5.95 | 5.42 | 1.7① | [ |
PCN-250(Fe) | 298 K,1 bar | 6.00 | 5.00 | 1.6① | [ |
NUM-9 | 298 K,1 bar | 2.48 | 2.30 | 1.61 | [ |
MOF-545 | 298 K,1 bar | 3.12 | 2.57 | 1.31 | [ |
ZJU-HOF-10(sc) | 296 K,1 bar | 2.19 | 1.88 | 1.9 | [ |
ZJU-HOF-10(v) | 296 K,1 bar | 0.64 | 0.58 | 1.54 | [ |
ZJU-HOF-1 | 298 K,1 bar | 4.87 | 3.87 | 2.25 | [ |
CAC-900-3 | 298 K,1 bar | 6.02 | 4.86 | 2.6 | [ |
AAC-800-3 | 298 K,1 bar | 5.98 | 4.68 | 2.2 | [ |
WAC-800-3 | 298 K,1 bar | 6.09 | 4.96 | 1.8 | [ |
SIFSIX-CAC-800-3 | 298 K,1 bar | 5.02 | 4.14 | 1.4 | [ |
DUT-8(Ni) | 303 K,1 bar | 3.96 | 2.27 | 1.65 | [ |
RT-Cu(Qc)2 | 298 K,1 bar | 2.04 | 0.56 | 4.1 | [ |
Ca(H2tcpb) | 298 K,1 bar | 2.78 | 2.67 | 1.75 | [ |
NIIC-20-Bu | 298 K,1 bar | 2.50 | 1.40 | 15.4 | [ |
ZJU-120a | 298 K,1 bar | 4.91 | 3.93 | 2.74 | [ |
NUM-7a | 298 K,1 bar | 3.04 | 2.68 | 1.76 | [ |
1 | Chen D L, Wang N W, Xu C H, et al. A combined theoretical and experimental analysis on transient breakthroughs of C2H6/C2H4 in fixed beds packed with ZIF-7[J]. Microporous and Mesoporous Materials, 2015, 208: 55-65. |
2 | Haghighi S S, Rahimpour M R, Raeissi S, et al. Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide[J]. Chemical Engineering Journal, 2013, 228: 1158-1167. |
3 | Amghizar I, Vandewalle L A, Geem K M V, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
4 | Liao P Q, Zhang W X, Zhang J P, et al. Efficient purification of ethene by an ethane-trapping metal-organic framework[J]. Nature Communications, 2015, 6: 8697. |
5 | Yang S Q, Sun F Z, Liu P X, et al. Efficient purification of ethylene from C2 hydrocarbons with an C2H6/C2H2-selective metal-organic framework[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 962-969. |
6 | Wu H X, Chen Y W, Yang W Y, et al. Ethane-selective behavior achieved on a nickel-based metal-organic framework: impact of pore effect and hydrogen bonds[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10516-10523. |
7 | Cho K H, Yoon J W, Lee J H, et al. Separation of ethane/ethylene gas mixture by ethane-selective CAU-3-NDCA adsorbent[J]. Microporous and Mesoporous Materials, 2022, 330: 111572. |
8 | Chen C X, Wei Z W, Pham T, et al. Nanospace engineering of metal-organic frameworks through dynamic spacer installation of multifunctionalities for efficient separation of ethane from ethane/ethylene mixtures[J]. Angewandte Chemie International Edition, 2021, 60(17): 9680-9685. |
9 | Liang W W, Wu Y, Xiao H Y, et al. Ethane-selective carbon composites CPDA@A-ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity[J]. AIChE Journal, 2018, 64(9): 3390-3399. |
10 | 朱登磊, 尚书勇, 谭超, 等. 基于分壁精馏塔的乙烯装置顺序分离新工艺及其模拟研究[J]. 石油学报(石油加工), 2014, 30(4): 682-686. |
Zhu D L, Shang S Y, Tan C, et al. A new sequential separation process and its simulation for ethylene plant based on a dividing wall column[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2014, 30(4): 682-686. | |
11 | 谭明松, 朱炜玄, 邹雄, 等. 脱乙烷塔侧采流程模拟与优化[J]. 石油化工, 2020, 49(8): 791-796. |
Tan M S, Zhu W X, Zou X, et al. Simulation and optimization of deethanizer with side draw process[J]. Petrochemical Technology, 2020, 49(8): 791-796. | |
12 | González-Garay A, Mac D N, Shah N. A carbon neutral chemical industry powered by the sun[J]. Discover Chemical Engineering, 2021, 1(1): 2. |
13 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
14 | Wang S M, Wang F, Dong Y L, et al. Reversed C2H6/C2H4 separation in interpenetrated diamondoid coordination networks with enhanced host-guest interaction[J]. Separation and Purification Technology, 2021, 276: 119385. |
15 | Lu C Y, Chen Y, Wang Y, et al. Energy efficient ethylene purification in a commercially viable ethane-selective MOF[J]. Separation and Purification Technology, 2022, 282: 120126. |
16 | Peng J J, Sun Y W, Wu Y, et al. Selectively trapping ethane from ethylene on metal-organic framework MIL-53(Al)-FA[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8290-8295. |
17 | Bereciartua P J, Cantín Á, Corma A, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene[J]. Science, 2017, 358(6366): 1068-1071. |
18 | Ma X C, Chen R F, Zhou K, et al. Activated porous carbon with an ultrahigh surface area derived from waste biomass for acetone adsorption, CO2 capture, and light hydrocarbon separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11721-11728. |
19 | Liu Y Z, Wu Y, Liang W W, et al. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane[J]. Chemical Engineering Science, 2020, 220: 115636. |
20 | Anson A, Wang Y, Lin C C H, et al. Adsorption of ethane and ethylene on modified ETS-10[J]. Chemical Engineering Science, 2008, 63(16): 4171-4175. |
21 | Li B Y, Zhang Y M, Krishna R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane[J]. Journal of the American Chemical Society, 2014, 136(24): 8654-8660. |
22 | Bao Z B, Alnemrat S, Yu L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(22): 13554-13562. |
23 | Bloch E D, Queen W L, Krishna R, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335(6076): 1606-1610. |
24 | Geier S J, Mason J A, Bloch E D, et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn)[J]. Chemical Science, 2013, 4(5): 2054-2061. |
25 | Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
26 | Yang Y S, Li L B, Lin R B, et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism[J]. Nature Chemistry, 2021, 13(10): 933-939. |
27 | Gu C, Hosono N, Zheng J J, et al. Design and control of gas diffusion process in a nanoporous soft crystal[J]. Science, 2019, 363(6425): 387-391. |
28 | Zhang L, Li L B, Hu E L, et al. Boosting ethylene/ethane separation within copper(Ⅰ)-chelated metal-organic frameworks through tailor-made aperture and specific π-complexation[J]. Advanced Science, 2020, 7(2): 1901918. |
29 | Chen Y W, Qiao Z W, Wu H X, et al. An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2018, 175: 110-117. |
30 | Mukherjee S, Desai A V, Ghosh S K. Potential of metal-organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures[J]. Coordination Chemistry Reviews, 2018, 367: 82-126. |
31 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
32 | Wang C, Liu D M, Lin W B. Metal-organic frameworks as a tunable platform for designing functional molecular materials[J]. Journal of the American Chemical Society, 2013, 135(36): 13222-13234. |
33 | Adil K, Belmabkhout Y, Pillai R S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46(11): 3402-3430. |
34 | Lin R B, Xiang S C, Xing H B, et al. Exploration of porous metal-organic frameworks for gas separation and purification[J]. Coordination Chemistry Reviews, 2019, 378: 87-103. |
35 | Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. |
36 | Peng Y L, Pham T, Li P F, et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene[J]. Angewandte Chemie International Edition, 2018, 57(34): 10971-10975. |
37 | Li L Y, Guo L D, Pu S Y, et al. A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 358: 446-455. |
38 | Zhang X, Wang J X, Li L B, et al. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 2021, 60(18): 10304-10310. |
39 | Zhang X, Li L B, Wang J X, et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework[J]. Journal of the American Chemical Society, 2020, 142(1): 633-640. |
40 | Wang J X, Gu X W, Lin Y X, et al. A novel hydrogen-bonded organic framework with highly permanent porosity for boosting ethane/ethylene separation[J]. ACS Materials Letters, 2021, 3(5): 497-503. |
41 | Chen S X, Huang Y F, Han X X, et al. Simultaneous and efficient removal of Cr(Ⅵ) and methyl orange on LDHs decorated porous carbons[J]. Chemical Engineering Journal, 2018, 352: 306-315. |
42 | Zhang P X, Zhong Y, Ding J, et al. A new choice of polymer precursor for solvent-free method: preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 963-973. |
43 | Liang W W, Zhang Y F, Wang X J, et al. Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene[J]. Chemical Engineering Science, 2017, 162: 192-202. |
44 | Lin R B, Wu H, Li L B, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12940-12946. |
45 | Qazvini O T, Babarao R, Shi Z L, et al. A robust ethane-trapping metal-organic framework with a high capacity for ethylene purification[J]. Journal of the American Chemical Society, 2019, 141(12): 5014-5020. |
46 | Pires J, Fernandes J, Dedecker K, et al. Enhancement of ethane selectivity in ethane-ethylene mixtures by perfluoro groups in Zr-based metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27410-27421. |
47 | Lee S K, Lee Y J, Cho K, et al. A fluorinated metal-organic framework, FMOF-2, for preferential adsorption of ethane over ethylene[J]. Bulletin of the Korean Chemical Society, 2021, 42(2): 286-289. |
48 | Zhang Y P, Lv D F, Chen J Y, et al. Preferential adsorption of ethane over ethylene on a Zr-based metal-organic framework: impacts of C—H⋯N hydrogen bonding[J]. New Journal of Chemistry, 2021, 45(18): 8045-8053. |
49 | Wang X, Niu Z, Al-Enizi A M, et al. Pore environment engineering in metal-organic frameworks for efficient ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2019, 7(22): 13585-13590. |
50 | Schneemann A, Jing Y, Evans J D, et al. Alkyl decorated metal-organic frameworks for selective trapping of ethane from ethylene above ambient pressures[J]. Dalton Transactions (Cambridge, England: 2003), 2021, 50 30: 10423-10435. |
51 | Gücüyener C, van den Bergh J, Gascon J, et al. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism[J]. Journal of the American Chemical Society, 2010, 132(50): 17704-17706. |
52 | Li Y P, Zhao Y N, Li S N, et al. Ultrahigh-uptake capacity-enabled gas separation and fruit preservation by a new single-walled nickel-organic framework[J]. Advanced Science, 2021, 8(12): 2003141. |
53 | Ma C, Wang X J, Wang X, et al. Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity[J]. Chemical Engineering Science, 2017, 172: 612-621. |
54 | Wang X J, Wu Y, Peng J J, et al. Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4 [J]. Chemical Engineering Journal, 2019, 358: 1114-1125. |
55 | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
56 | Lysova A A, Samsonenko D G, Kovalenko K A, et al. A series of mesoporous metal-organic frameworks with tunable windows sizes and exceptionally high ethane over ethylene adsorption selectivity[J]. Angewandte Chemie International Edition, 2020, 59(46): 20561-20567. |
57 | Yang L, Zhou W, Li H, et al. Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 593-597. |
58 | Pei J Y, Wang J X, Shao K, et al. Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2020, 8(7): 3613-3620. |
59 | Zheng S T, Bu J T, Li Y F, et al. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake[J]. Journal of the American Chemical Society, 2010, 132(48): 17062-17064. |
60 | Zhang Q L, Chen J, Zhu X C, et al. 7-Connected F e 3 Ⅲ -based bio-MOF: pore space partition and gas separations[J]. Inorganic Chemistry, 2020, 59(23): 16829-16832. |
61 | Serre C, Mellot-Draznieks C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks[J]. Science, 2007, 315(5820): 1828-1831. |
62 | Yang H J, Wang Y X, Krishna R, et al. Pore-space-partition-enabled exceptional ethane uptake and ethane-selective ethane-ethylene separation[J]. Journal of the American Chemical Society, 2020, 142(5): 2222-2227. |
63 | Liang W W, Xu F, Zhou X, et al. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene[J]. Chemical Engineering Science, 2016, 148: 275-281. |
64 | Wu H X, Chen Y W, Lv D F, et al. An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture[J]. Separation and Purification Technology, 2019, 212: 51-56. |
65 | Sun F Z, Yang S Q, Krishna R, et al. Microporous metal-organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6105-6111. |
66 | Wu H X, Chen Y W, Yuan Y N, et al. The modulation of ethane-selective adsorption performance in series of bimetal PCN-250 metal-organic frameworks: impact of metal composition[J]. AIChE Journal, 2022, 68(1): e17385. |
67 | Lee S K, Park H, Yoon J W, et al. Microporous 3D graphene-like zeolite-templated carbons for preferential adsorption of ethane[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28484-28495. |
68 | Xiao H Y, Wu Y, Wang X J, et al. A novel fructose-based adsorbent with high capacity and its ethane-selective adsorption property[J]. Journal of Solid State Chemistry, 2018, 268: 190-197. |
69 | Zhang P X, Wen X, Wang L, et al. Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons[J]. Chemical Engineering Journal, 2020, 381: 122731. |
70 | Wang Z H, Yang L F, Zhang P X, et al. Highly microporous activated carbons with industrial potential for selective adsorption of ethane over ethylene[J]. Industrial & Engineering Chemistry Research, 2021, 60(36): 13301-13308. |
71 | Gu X W, Wang J X, Wu E Y, et al. Immobilization of lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture[J]. Journal of American Chemical Society, 2022, 144(6): 2614-2623. |
72 | Jiang S S, Guo L D, Chen L H, et al. A strongly hydrophobic ethane-selective metal-organic framework for efficient ethane/ethylene separation[J]. Chemical Engineering Journal, 2022, 442: 136152. |
73 | Zhang J Y, Liu Z W, Liu H B, et al. Preferential adsorption performance of ethane in a robust nickel-based metal-organic framework for separating ethane from ethylene[J]. ACS Omega, 2022, 7(9): 7648-7654. |
74 | Cho K H, Yoon J W, Lee J H, et al. Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture[J]. Journal of Materials Chemistry A, 2021, 9(25): 14593-14600. |
75 | Fan L H, Zhou P, Wang X X, et al. Rational construction and performance regulation of an In(Ⅲ)-tetraisophthalate framework for one-step adsorption-phase purification of C2H4 from C2 hydrocarbons[J]. Inorganic Chemistry, 2021, 60(14): 10819-10829. |
76 | He C H, Wang Y, Chen Y, et al. An ethane-favored metal-organic framework with tailored pore environment used for efficient ethylene separation[J]. Microporous and Mesoporous Materials, 2021, 320: 111096. |
77 | Jiang S S, Li L Y, Guo L D, et al. A robust ethane-trapping metal-organic framework for efficient purification of ethylene[J]. Science China Chemistry, 2021, 64(4): 666-672. |
78 | Jiang Z Z, Fan L H, Zhou P, et al. An aromatic-rich cage-based MOF with inorganic chloride ions decorating the pore surface displaying the preferential adsorption of C2H2 and C2H6 over C2H4 [J]. Inorganic Chemistry Frontiers, 2021, 8(5): 1243-1252. |
79 | Kang M, Kang D W, Choe J H, et al. A robust hydrogen-bonded metal-organic framework with enhanced ethane uptake and selectivity[J]. Chemistry of Materials, 2021, 33(15): 6193-6199. |
80 | Lei X W, Yang H J, Wang Y X, et al. Tunable metal-organic frameworks based on 8-connected metal trimers for high ethane uptake[J]. Small, 2021, 17(22): 2003167. |
81 | Liu P X, Wang Y, Chen Y, et al. Construction of saturated coordination titanium-based metal-organic framework for one-step C2H2/C2H6/C2H4 separation[J]. Separation and Purification Technology, 2021, 276: 119284. |
82 | Wang Y T, Hao C L, Fan W D, et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal-organic frameworks[J]. Angewandte Chemie International Edition, 2021, 60(20): 11350-11358. |
83 | Wang Z Q, Luo H Q, Wang Y L, et al. Octanuclear cobalt(Ⅱ) cluster-based metal-organic framework with caged structure exhibiting the selective adsorption of ethane over ethylene[J]. Inorganic Chemistry, 2021, 60(14): 10596-10602. |
84 | Cho K H, Yoon J W, Lee J H, et al. Effect of framework rigidity in metal-organic frameworks for adsorptive separation of ethane/ethylene[J]. Microporous and Mesoporous Materials, 2020, 307: 110473. |
85 | Tang Y N, Wang S, Zhou X, et al. Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons[J]. Chemical Engineering Science, 2020, 213: 115355. |
86 | Lin Y H, Li Y Z, Wang H, et al. Separation of ethane and ethylene by a robust ethane-selective calcium-based metal-organic framework[J]. New Journal of Chemistry, 2020, 44(28): 11933-11936. |
87 | Xu Z Z, Xiong X H, Xiong J B, et al. A robust Th-azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture[J]. Nature Communications, 2020, 11: 3163. |
88 | 刘普旭, 贺朝辉, 李立博, 等. 高稳定双金属MOF材料用于低浓度乙烷的高效分离[J]. 化工学报, 2020, 71(9): 4211-4218. |
Liu P X, He C H, Li L B, et al. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation[J]. CIESC Journal, 2020, 71(9): 4211-4218. | |
89 | Yang L, Wang Y, Chen Y, et al. Microporous metal-organic framework with specific functional sites for efficient removal of ethane from ethane/ethylene mixtures[J]. Chemical Engineering Journal, 2020, 387: 124137. |
90 | Chen K J, Madden D G, Mukherjee S, et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture[J]. Science, 2019, 366(6462): 241-246. |
91 | Wang Y X, Yuan S, Hu Z G, et al. Pore size reduction in zirconium metal-organic frameworks for ethylene/ethane separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7118-7126. |
92 | Chen Y W, Wu H X, Lv D F, et al. Highly adsorptive separation of ethane/ethylene by an ethane-selective MOF MIL-142A[J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 4063-4069. |
93 | Hao H G, Zhao Y F, Chen D M, et al. Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal-organic framework for the purification of C2H4 [J]. Angewandte Chemie International Edition, 2018, 57(49): 16067-16071. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[3] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[8] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[14] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[15] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 411
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||