CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4311-4323.DOI: 10.11949/0438-1157.20220838
• Reviews and monographs • Previous Articles Next Articles
Xinhui WANG1,2,3(), Ying WANG1,2, Mingdong YAO1,2,3(), Wenhai XIAO1,2
Received:
2022-06-15
Revised:
2022-07-27
Online:
2022-11-02
Published:
2022-10-05
Contact:
Mingdong YAO
王欣慧1,2,3(), 王颖1,2, 姚明东1,2,3(), 肖文海1,2
通讯作者:
姚明东
作者简介:
王欣慧(1998—),女,硕士研究生,1575799416@qq.com
基金资助:
CLC Number:
Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis[J]. CIESC Journal, 2022, 73(10): 4311-4323.
王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323.
Add to citation manager EndNote|Ris|BibTeX
公司 | 产地 | 上游中间体 | 生产工艺 | 产能/(t/a) |
---|---|---|---|---|
新和成 | 中国 | 自配 | Roche[ | 10000 |
帝斯曼 | 荷兰等 | 外购 | Roche | 7500 |
巴斯夫 | 德国等 | 自配 | BASF[ | 6000 |
浙江医药 | 中国 | 外购 | BASF | 5600 |
安迪苏 | 法国等 | 外购 | BASF | 5000 |
金达威 | 中国 | 外购 | Roche | 2900 |
Table 1 Global major manufacturers of vitamin A
公司 | 产地 | 上游中间体 | 生产工艺 | 产能/(t/a) |
---|---|---|---|---|
新和成 | 中国 | 自配 | Roche[ | 10000 |
帝斯曼 | 荷兰等 | 外购 | Roche | 7500 |
巴斯夫 | 德国等 | 自配 | BASF[ | 6000 |
浙江医药 | 中国 | 外购 | BASF | 5600 |
安迪苏 | 法国等 | 外购 | BASF | 5000 |
金达威 | 中国 | 外购 | Roche | 2900 |
底盘细胞 | 工程化手段 | 产量 | 文献 |
---|---|---|---|
大肠杆菌 | 表达家鼠来源的β-胡萝卜素15,15′-氧化酶; 优化最佳反应条件:pH、温度、底物浓度和表面活性剂 | 视黄醛产量:72 mg/L | [ |
大肠杆菌 | 选择密码子优化后的β-胡萝卜素15,15′-氧化酶; 上调dxs,优化内源MEP途径; 引入外源性MVA途径,提供IPP和DMAPP; 筛选大肠菌株:MG1655、DH5a、X11-BLUE、S17-1和BL21; 发酵条件优化:氧浓度、碳源和温度 | 视黄醛产量:136 mg/L | [ |
大肠杆菌 | 引入两个异源基因blhSR和RALDH2; 删除内源编码醛还原酶的ybbO基因; 采用mRNA稳定区工程方法; 优化维生素A产生菌的培养条件:温度、pH和氧浓度 | 5 L生物反应器分批发酵;维甲酸产量: (8.20±0.05) mg/L | [ |
大肠杆菌 | 筛选了编码β-胡萝卜素裂解酶的基因:blh、brp和bcox; 采用mRNA稳定区工程提高blh催化效率; 共同表达合成视黄基棕榈酸酯路径基因LRAT和CRBP | 分批补料发酵培养;视黄基棕榈酸酯产量为(69.96±2.64) mg/L | [ |
大肠杆菌 | 优化发酵条件:温度、pH、搅拌速度; 筛选最佳表面活性剂 | 视黄醛产量:600 mg/L | [ |
大肠杆菌 | 过表达内源基因ybbO,增强醛→醇转化; 敲除编码O-乙酰转移酶的基因cat | 视黄醛、视黄醇、视黄醇醋酸酯产量的比例为6%、88%、6% | [ |
酿酒酵母 | 采用以木糖为碳源的酵母菌株; 采用十二烷和橄榄油两相原位萃取 | 3 L生物反应器分批补料;视黄醇、视黄醛产量为1256、2094 mg/L | [ |
酿酒酵母 | 引入人来源RDH12和乳球菌noxE; 优化发酵条件,以木糖为碳源,十二烷为萃取剂; 筛选最适培养和储存条件,包括温度、光照和抗氧化剂 | 250 ml摇瓶发酵;视黄醇产量:123.1 mg/L | [ |
酿酒酵母 | 过表达酵母内源ENV9和截短的Hmg1; 发酵添加1.44 mmol/L Fe2+以维持blh酶活性 | 视黄醇产量:443.43 mg/L | [ |
Table 2 Progress in metabolic engineering transformation related to vitamin A
底盘细胞 | 工程化手段 | 产量 | 文献 |
---|---|---|---|
大肠杆菌 | 表达家鼠来源的β-胡萝卜素15,15′-氧化酶; 优化最佳反应条件:pH、温度、底物浓度和表面活性剂 | 视黄醛产量:72 mg/L | [ |
大肠杆菌 | 选择密码子优化后的β-胡萝卜素15,15′-氧化酶; 上调dxs,优化内源MEP途径; 引入外源性MVA途径,提供IPP和DMAPP; 筛选大肠菌株:MG1655、DH5a、X11-BLUE、S17-1和BL21; 发酵条件优化:氧浓度、碳源和温度 | 视黄醛产量:136 mg/L | [ |
大肠杆菌 | 引入两个异源基因blhSR和RALDH2; 删除内源编码醛还原酶的ybbO基因; 采用mRNA稳定区工程方法; 优化维生素A产生菌的培养条件:温度、pH和氧浓度 | 5 L生物反应器分批发酵;维甲酸产量: (8.20±0.05) mg/L | [ |
大肠杆菌 | 筛选了编码β-胡萝卜素裂解酶的基因:blh、brp和bcox; 采用mRNA稳定区工程提高blh催化效率; 共同表达合成视黄基棕榈酸酯路径基因LRAT和CRBP | 分批补料发酵培养;视黄基棕榈酸酯产量为(69.96±2.64) mg/L | [ |
大肠杆菌 | 优化发酵条件:温度、pH、搅拌速度; 筛选最佳表面活性剂 | 视黄醛产量:600 mg/L | [ |
大肠杆菌 | 过表达内源基因ybbO,增强醛→醇转化; 敲除编码O-乙酰转移酶的基因cat | 视黄醛、视黄醇、视黄醇醋酸酯产量的比例为6%、88%、6% | [ |
酿酒酵母 | 采用以木糖为碳源的酵母菌株; 采用十二烷和橄榄油两相原位萃取 | 3 L生物反应器分批补料;视黄醇、视黄醛产量为1256、2094 mg/L | [ |
酿酒酵母 | 引入人来源RDH12和乳球菌noxE; 优化发酵条件,以木糖为碳源,十二烷为萃取剂; 筛选最适培养和储存条件,包括温度、光照和抗氧化剂 | 250 ml摇瓶发酵;视黄醇产量:123.1 mg/L | [ |
酿酒酵母 | 过表达酵母内源ENV9和截短的Hmg1; 发酵添加1.44 mmol/L Fe2+以维持blh酶活性 | 视黄醇产量:443.43 mg/L | [ |
改造策略 | 具体改造信息 | 结果 | 文献 |
---|---|---|---|
碳源 | 葡萄糖、木糖 | 20.74 mg/L维生素A(44 g/L木糖) | [ |
温度、pH | 温度:24~33℃ pH:5.5~8.0 | 视黄醛产量最大(pH 7.0,30℃), 细胞量达到最大(27℃) | [ |
表面活性剂 | Span20、Span40、Span60、Span80、 Tween20、Tween40、Tween80、Brij58、Triton X-100 | 细胞量最大, 细胞积累量为15.2 g/L(10 g/L Span80) | [ |
搅拌速率 | 400、500、600、700、800 r/min | 视黄醛产量最大为600 mg/L(600 r/min) | [ |
萃取剂 | 十二烷、大豆油和橄榄油 | 十二烷效果最佳 | [ |
光 | 光照条件、黑暗条件 | 视黄醇浓度最高为124.6 mg/L(黑暗) | [ |
Table 3 The downstream transformation strategy of vitamin A production
改造策略 | 具体改造信息 | 结果 | 文献 |
---|---|---|---|
碳源 | 葡萄糖、木糖 | 20.74 mg/L维生素A(44 g/L木糖) | [ |
温度、pH | 温度:24~33℃ pH:5.5~8.0 | 视黄醛产量最大(pH 7.0,30℃), 细胞量达到最大(27℃) | [ |
表面活性剂 | Span20、Span40、Span60、Span80、 Tween20、Tween40、Tween80、Brij58、Triton X-100 | 细胞量最大, 细胞积累量为15.2 g/L(10 g/L Span80) | [ |
搅拌速率 | 400、500、600、700、800 r/min | 视黄醛产量最大为600 mg/L(600 r/min) | [ |
萃取剂 | 十二烷、大豆油和橄榄油 | 十二烷效果最佳 | [ |
光 | 光照条件、黑暗条件 | 视黄醇浓度最高为124.6 mg/L(黑暗) | [ |
1 | Blomhoff R, Blomhoff H K. Overview of retinoid metabolism and function[J]. Journal of Neurobiology, 2006, 66(7): 606-630. |
2 | Tanumihardjo S A. Vitamin A: biomarkers of nutrition for development[J]. The American Journal of Clinical Nutrition, 2011, 94(2): 658S-665S. |
3 | Wirth J P, Petry N, Tanumihardjo S A, et al. Vitamin A supplementation programs and country-level evidence of vitamin A deficiency[J]. Nutrients, 2017, 9(3): 190. |
4 | Srinivasan K, Buys E M. Insights into the role of bacteria in vitamin A biosynthesis: future research opportunities[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(19): 3211-3226. |
5 | Khalil S, Bardawil T, Stephan C, et al. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects[J]. Journal of Dermatological Treatment, 2017, 28(8): 684-696. |
6 | Eggersdorfer M, Laudert D, Létinois U, et al. One hundred years of vitamins—a success story of the natural sciences[J]. Angewandte Chemie International Edition, 2012, 51(52): 12960-12990. |
7 | Parker G L, Smith L K, Baxendale I R. Development of the industrial synthesis of vitamin A[J]. Tetrahedron, 2016, 72(13): 1645-1652. |
8 | Steinle A, Bergander K, Steinbüchel A. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids[J]. Appl. Environ. Microbiol., 2009, 75(11): 3437-3446. |
9 | Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms[J]. Current Opinion in Biotechnology, 2016, 37: 165-172. |
10 | Karunanandaa B, Qi Q G, Hao M, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol[J]. Metabolic Engineering, 2005, 7(5/6): 384-400. |
11 | Zhang C Y, Cahoon R E, Hunter S C, et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production[J]. The Plant Journal, 2013, 73(4): 628-639. |
12 | Chapman M S. Vitamin A: history, current uses, and controversies[J]. Seminars in Cutaneous Medicine and Surgery, 2012, 31(1): 11-16. |
13 | Kim Y S, Oh D K. Biotransformation of carotenoids to retinal by carotenoid 15, 15'-oxygenase[J]. Applied Microbiology and Biotechnology, 2010, 88(4): 807-816. |
14 | Goodman D S, Huang H S, Shiratori T. Mechanism of the biosynthesis of vitamin A from beta-carotene[J]. The Journal of Biological Chemistry, 1966, 241(9): 1929-1932. |
15 | Goodman D S, Huang H S, Kanai M, et al. The enzymatic conversion of all-trans β-carotene into retinal[J]. Journal of Biological Chemistry, 1967, 242(15): 3543-3554. |
16 | Wang X D, Krinsky N I. Fat-soluble vitamins [M]//Quinn P J, Kagan V E. Subcellular Biochemistry: Volume 30. New York: Plenum Press, 1998: 159-177. |
17 | Olson J A, Hayaishi O. The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine[J]. PLoS One, 1965, 54(5): 1364-1370. |
18 | Lakshman M R, Mychkovsky I, Attlesey M. Enzymatic conversion of all-trans-beta-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa[J]. The Journal of General and Applied Microbiology, 1989, 86(23): 9124-9128. |
19 | Helden Y G J, Heil S G, Schooten F J, et al. Knockout of the Bcmo1 gene results in an inflammatory response in female lung, which is suppressed by dietary beta-carotene[J]. Cellular and Molecular Life Sciences, 2010, 67(12): 2039-2056. |
20 | von Lintig J, Hessel S, Isken A, et al. Towards a better understanding of carotenoid metabolism in animals[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2005, 1740(2): 122-131. |
21 | Lampert J M, Holzschuh J, Hessel S, et al. Provitamin A conversion to retinal via the beta, beta-carotene-15, 15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis[J]. Development (Cambridge, England), 2003, 130(10): 2173-2186. |
22 | Paik J, During A, Harrison E H, et al. Expression and characterization of a murine enzyme able to cleave β-carotene: the formation of retinoids[J]. Journal of Biological Chemistry, 2001, 276(34): 32160-32168. |
23 | von Lintig J, Vogt K. Filling the gap in vitamin A research: molecular identification of an enzyme cleaving β-carotene to retinal[J]. Journal of Biological Chemistry, 2000, 275(16): 11915-11920. |
24 | Lindqvist A, Andersson S. Biochemical properties of purified recombinant human β-carotene 15, 15'-monooxygenase[J]. Journal of Biological Chemistry, 2002, 277(26): 23942-23948. |
25 | Höög J O, Östberg L J. Mammalian alcohol dehydrogenases — a comparative investigation at gene and protein levels[J]. Chemico-Biological Interactions, 2011, 191(1/2/3): 2-7. |
26 | O'Byrne S M, Blaner W S. Retinol and retinyl esters: biochemistry and physiology[J]. Journal of Lipid Research, 2013, 54(7): 1731-1743. |
27 | Menozzi I, Vallese F, Polverini E, et al. Structural and molecular determinants affecting the interaction of retinol with human CRBP1[J]. Journal of Structural Biology, 2017, 197(3): 330-339. |
28 | Devery J, Milborrow B V. β-Carotene-15,15′-dioxygenase (EC 1.13.11.21) isolation reaction mechanism and an improved assay procedure[J]. British Journal of Nutrition, 1994, 72(3): 397-414. |
29 | Nagao A, During A, Hoshino C, et al. Stoichiometric conversion of all trans-beta-carotene to retinal by pig intestinal extract[J]. Archives of Biochemistry and Biophysics, 1996, 328(1): 57-63. |
30 | Kim Y S, Oh D K. Substrate specificity of a recombinant chicken β-carotene 15, 15'-monooxygenase that converts β-carotene into retinal[J]. Biotechnology Letters, 2009, 31(3): 403-408. |
31 | Peck R F, Echavarri-Erasun C, Johnson E A, et al. Brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum [J]. Journal of Biological Chemistry, 2001, 276(8): 5739-5744. |
32 | Kim Y S, Kim N H, Kim H J, et al. Effective production of retinal from beta-carotene using recombinant mouse beta-carotene 15, 15'-monooxygenase[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1339-1345. |
33 | Jang H J, Yoon S H, Ryu H K, et al. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system[J]. Microbial Cell Factories, 2011, 10: 59. |
34 | Han M, Lee P C. Microbial production of bioactive retinoic acid using metabolically engineered Escherichia coli [J]. Microorganisms, 2021, 9(7): 1520. |
35 | Choi B H, Hwang H J, Lee J E, et al. Microbial production of retinyl palmitate and its application as a cosmeceutical[J]. Antioxidants (Basel, Switzerland), 2020, 9(11): 1130. |
36 | Lee J H, Choi J G, Kim Y S, et al. Enhancement of retinal production by supplementing the surfactant Span 80 using metabolically engineered Escherichia coli [J]. Journal of Bioscience and Bioengineering, 2012, 113(4): 461-466. |
37 | Jang H J, Ha B K, Zhou J, et al. Selective retinol production by modulating the composition of retinoids from metabolically engineered E. coli [J]. Biotechnology and Bioengineering, 2015, 112(8): 1604-1612. |
38 | Sun L, Kwak S, Jin Y S. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction[J]. ACS Synthetic Biology, 2019, 8(9): 2131-2140. |
39 | Lee Y G, Kim C, Sun L, et al. Selective production of retinol by engineered Saccharomyces cerevisiae through the expression of retinol dehydrogenase[J]. Biotechnology and Bioengineering, 2022, 119(2): 399-410. |
40 | Hu Q Y, Zhang T L, Yu H W, et al. Selective biosynthesis of retinol in S. cerevisiae [J]. Bioresources and Bioprocessing, 2022, 9: 22. |
41 | 汪之顼. 维生素A[J]. 营养学报, 2014, 36(1): 8-12. |
Wang Z X. Vitamin A[J]. Journal of Nutrition, 2014, 36(1): 8-12. | |
42 | Chen Y, Xiao W H, Wang Y, et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113. |
43 | Yamada R, Yamauchi A, Ando Y, et al. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae [J]. Bioresource Technology, 2018, 268: 616-621. |
44 | Larroude M, Celinska E, Back A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
45 | Wang M, Liu G N, Liu H, et al. Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2018, 11: 115. |
46 | Zhao Y J, Zhang Y P, Nielsen J, et al. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism[J]. Biotechnology and Bioengineering, 2021, 118(5): 2043-2052. |
47 | Ma Y S, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica [J]. Nature Communications, 2022, 13: 572. |
48 | Duetz W A, van Beilen J B, Witholt B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis[J]. Current Opinion in Biotechnology, 2001, 12(4): 419-425. |
49 | Lee W H, Kim J W, Park E H, et al. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2013, 97(4): 1561-1569. |
50 | Zhao J, Li Q Y, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17: 42-50. |
51 | Bruinenberg P M. The NADP(H) redox couple in yeast metabolism[J]. Antonie Van Leeuwenhoek, 1986, 52(5): 411-429. |
52 | Lim S J, Jung Y M, Shin H D, et al. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon[J]. Journal of Bioscience and Bioengineering, 2002, 93(6): 543-549. |
53 | Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels[J]. Biotechnology Advances, 2017, 35(8): 1032-1039. |
54 | Liu J H, Li H L, Zhao G R, et al. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions[J]. Journal of Industrial Microbiology and Biotechnology, 2018, 45(5): 313-327. |
55 | Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply[J]. Biotechnology and Bioengineering, 2020, 117(7): 2153-2164. |
56 | Xiong J H, Chen H F, Liu R, et al. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production[J]. Bioresources and Bioprocessing, 2021, 8: 32. |
57 | Du H J, Luo W, Appiah B, et al. Promotion of the asymmetric reduction of prochiral ketone with recombinant E. coli through strengthening intracellular NADPH supply by modifying EMP and introducing NAD kinase[J]. Catalysis Letters, 2021, 151(9): 2527-2536. |
58 | Barua A B, Furr H C. Properties of retinoids. structure, handling, and preparation[J]. Molecular Biotechnology, 1998, 10(2): 167-182. |
59 | Hong S H, Kim K R, Oh D K. Biochemical properties of retinoid-converting enzymes and biotechnological production of retinoids[J]. Applied Microbiology and Biotechnology, 2015, 99(19): 7813-7826. |
60 | Yang J, Wang W, Ooi J, et al. Signalling through retinoic acid receptors is required for reprogramming of both mouse embryonic fibroblast cells and epiblast stem cells to induced pluripotent stem cells[J]. Stem Cells, 2015, 33(5): 1390-1404. |
61 | Ro J, Kim Y, Kim H, et al. Anti-oxidative activity of pectin and its stabilizing effect on retinyl palmitate[J]. The Korean Journal of Physiology & Pharmacology, 2013, 17(3): 197-201. |
62 | Parente E, Ricciardi A. Production, recovery and purification of bacteriocins from lactic acid bacteria[J]. Applied Microbiology and Biotechnology, 1999, 52(5): 628-638. |
63 | Laouar L, Lowe K C, Mulligan B J. Yeast responses to nonionic surfactants[J]. Enzyme and Microbial Technology, 1996, 18(6): 433-438. |
64 | Kim Y S, Kim N H, Yeom S J, et al. In vitro characterization of a recombinant blh protein from an uncultured marine bacterium as a β-carotene 15,15'-dioxygenase[J]. Journal of Biological Chemistry, 2009, 284(23): 15781-15793. |
65 | Abbasiliasi S, Tan J S, Kadkhodaei S, et al. Enhancement of BLIS production by Pediococcus acidilactici kp10 in optimized fermentation conditions using an artificial neural network[J]. RSC Advances, 2016, 6(8): 6342-6349. |
66 | Puri S, Beg Q K, Gupta R. Optimization of alkaline protease production from Bacillus sp. by response surface methodology[J]. Current Microbiology, 2002, 44(4): 286-290. |
67 | Sauvant P, Cansell M, Hadj Sassi A, et al. Vitamin A enrichment: caution with encapsulation strategies used for food applications[J]. Food Research International, 2012, 46(2): 469-479. |
68 | Carlotti M E, Rossatto V, Gallarate M. Vitamin A and vitamin A palmitate stability over time and under UVA and UVB radiation[J]. International Journal of Pharmaceutics, 2002, 240(1/2): 85-94. |
69 | Loveday S M, Singh H. Recent advances in technologies for vitamin A protection in foods[J]. Trends in Food Science & Technology, 2008, 19(12): 657-668. |
70 | Chmykh Y G, Nadeau J L. Characterization of retinol stabilized in phosphatidylcholine vesicles with and without antioxidants[J]. ACS Omega, 2020, 5(29): 18367-18375. |
71 | Crank G, Pardijanto M S. Photo-oxidations and photosensitized oxidations of vitamin A and its palmitate ester[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 85(1/2): 93-100. |
72 | Liew S L, Ariff A B, Raha A R, et al. Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology[J]. International Journal of Food Microbiology, 2005, 102(2): 137-142. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[7] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[8] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[9] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[10] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[11] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[12] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[13] | Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment [J]. CIESC Journal, 2022, 73(5): 2222-2232. |
[14] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[15] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||