CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4324-4334.DOI: 10.11949/0438-1157.20220603
• Thermodynamics • Previous Articles Next Articles
Xianhui ZHU(), Fu WANG(), Jiecheng XIA, Jinliang YUAN
Received:
2022-04-28
Revised:
2022-08-21
Online:
2022-11-02
Published:
2022-10-05
Contact:
Fu WANG
通讯作者:
王甫
作者简介:
朱先会(1997—),男,硕士研究生,zxh18338261771@126.com
基金资助:
CLC Number:
Xianhui ZHU, Fu WANG, Jiecheng XIA, Jinliang YUAN. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids[J]. CIESC Journal, 2022, 73(10): 4324-4334.
朱先会, 王甫, 夏杰成, 袁金良. 功能型离子液体协同吸收NH3和CO2的密度泛函理论研究[J]. 化工学报, 2022, 73(10): 4324-4334.
Add to citation manager EndNote|Ris|BibTeX
Structure | BCP | ρBCP/a.u. | ∇2ρBCP/a.u. | EHB/ (kJ·mol-1) |
---|---|---|---|---|
[HEMim][Glu] | C1—H4—O35 | 0.04886 | 0.12196 | 42.5 |
[HEMim][Glu] | C10—H12—O35 | 0.01331 | 0.03917 | 9.32 |
[HEMim][Glu] | C17—H18—O34 | 0.02293 | 0.06332 | 18.33 |
[HEMim][Asp] | C1—H6—O28 | 0.04452 | 0.12057 | 38.45 |
[HEMim][Asp] | C9—H11—O29 | 0.02270 | 0.06867 | 18.07 |
[HEMim][Asp] | C16—H18—O28 | 0.01305 | 0.04481 | 9.04 |
[HEBim][Asp] | C1—H7—O37 | 0.05038 | 0.13735 | 43.92 |
[HEBim][Asp] | C11—H13—O38 | 0.01245 | 0.04123 | 8.54 |
[HEBim][Asp] | O14—H15—O38 | 0.02940 | 0.10492 | 24.35 |
[HEBim][Ala] | C1—H6—O37 | 0.04807 | 0.13029 | 41.76 |
[HEBim][Ala] | C22—H23—O38 | 0.01340 | 0.04554 | 9.41 |
[HEBim][Ala] | O28—H29—O38 | 0.02945 | 0.10705 | 24.39 |
[HEBim][Ala] | O37—H41—N39 | 0.01887 | 0.07515 | 14.52 |
[HEBim][His] | C1—H9—O48 | 0.04721 | 0.12949 | 40.96 |
[HEBim][His] | C11—H13—O47 | 0.01355 | 0.04557 | 9.54 |
[HEBim][His] | O17—H18—O47 | 0.03139 | 0.11223 | 26.19 |
[HEBim][His] | N44—H45—O28 | 0.01809 | 0.07527 | 13.77 |
[HEBim][His] | N44—H46—N36 | 0.01247 | 0.04044 | 8.54 |
Table 1 Properties of electron density of BCP of five ionic liquids calculated at B3LYP/6-31’++G(d,p) level
Structure | BCP | ρBCP/a.u. | ∇2ρBCP/a.u. | EHB/ (kJ·mol-1) |
---|---|---|---|---|
[HEMim][Glu] | C1—H4—O35 | 0.04886 | 0.12196 | 42.5 |
[HEMim][Glu] | C10—H12—O35 | 0.01331 | 0.03917 | 9.32 |
[HEMim][Glu] | C17—H18—O34 | 0.02293 | 0.06332 | 18.33 |
[HEMim][Asp] | C1—H6—O28 | 0.04452 | 0.12057 | 38.45 |
[HEMim][Asp] | C9—H11—O29 | 0.02270 | 0.06867 | 18.07 |
[HEMim][Asp] | C16—H18—O28 | 0.01305 | 0.04481 | 9.04 |
[HEBim][Asp] | C1—H7—O37 | 0.05038 | 0.13735 | 43.92 |
[HEBim][Asp] | C11—H13—O38 | 0.01245 | 0.04123 | 8.54 |
[HEBim][Asp] | O14—H15—O38 | 0.02940 | 0.10492 | 24.35 |
[HEBim][Ala] | C1—H6—O37 | 0.04807 | 0.13029 | 41.76 |
[HEBim][Ala] | C22—H23—O38 | 0.01340 | 0.04554 | 9.41 |
[HEBim][Ala] | O28—H29—O38 | 0.02945 | 0.10705 | 24.39 |
[HEBim][Ala] | O37—H41—N39 | 0.01887 | 0.07515 | 14.52 |
[HEBim][His] | C1—H9—O48 | 0.04721 | 0.12949 | 40.96 |
[HEBim][His] | C11—H13—O47 | 0.01355 | 0.04557 | 9.54 |
[HEBim][His] | O17—H18—O47 | 0.03139 | 0.11223 | 26.19 |
[HEBim][His] | N44—H45—O28 | 0.01809 | 0.07527 | 13.77 |
[HEBim][His] | N44—H46—N36 | 0.01247 | 0.04044 | 8.54 |
Structure | Atoms | ESP | ADCH | Hirshfeld |
---|---|---|---|---|
[HEMim][Glu] | O13 | -0.7015 | -0.4896 | -0.2236 |
[HEMim][Glu] | O31 | -0.6499 | -0.4914 | -0.1804 |
[HEMim][Glu] | O33 | -0.5800 | -0.5392 | -0.2963 |
[HEMim][Glu] | O34 | -0.8291 | -0.3179 | -0.3635 |
[HEMim][Glu] | O35 | -0.7445 | -0.2780 | -0.3485 |
[HEMim][Glu] | N36 | -0.8907 | -0.5660 | -0.2056 |
[HEMim][Glu] | H4 | 0.3344 | 0.1135 | 0.0522 |
[HEMim][Glu] | H5 | 0.2147 | 0.1688 | 0.0720 |
[HEMim][Glu] | H6 | 0.2078 | 0.1686 | 0.0720 |
[HEMim][Glu] | H14 | 0.4238 | 0.3733 | 0.1634 |
[HEBim][Ala] | O28 | -0.6796 | -0.4611 | -0.2436 |
[HEBim][Ala] | O37 | -0.7270 | -0.5027 | -0.3340 |
[HEBim][Ala] | O38 | -0.7921 | -0.4611 | -0.3255 |
[HEBim][Ala] | N39 | -1.0336 | -0.7204 | -0.2306 |
[HEBim][Ala] | H4 | 0.2228 | 0.1274 | 0.0723 |
[HEBim][Ala] | H5 | 0.2238 | 0.1155 | 0.0697 |
[HEBim][Ala] | H6 | 0.2619 | 0.2064 | 0.0527 |
[HEBim][Ala] | H29 | 0.4241 | 0.3252 | 0.1147 |
Table 2 ESP, ADCH and Hirshfeld charges for ionic liquids calculated at B3LYP/6-31’ ++G(d,p) level
Structure | Atoms | ESP | ADCH | Hirshfeld |
---|---|---|---|---|
[HEMim][Glu] | O13 | -0.7015 | -0.4896 | -0.2236 |
[HEMim][Glu] | O31 | -0.6499 | -0.4914 | -0.1804 |
[HEMim][Glu] | O33 | -0.5800 | -0.5392 | -0.2963 |
[HEMim][Glu] | O34 | -0.8291 | -0.3179 | -0.3635 |
[HEMim][Glu] | O35 | -0.7445 | -0.2780 | -0.3485 |
[HEMim][Glu] | N36 | -0.8907 | -0.5660 | -0.2056 |
[HEMim][Glu] | H4 | 0.3344 | 0.1135 | 0.0522 |
[HEMim][Glu] | H5 | 0.2147 | 0.1688 | 0.0720 |
[HEMim][Glu] | H6 | 0.2078 | 0.1686 | 0.0720 |
[HEMim][Glu] | H14 | 0.4238 | 0.3733 | 0.1634 |
[HEBim][Ala] | O28 | -0.6796 | -0.4611 | -0.2436 |
[HEBim][Ala] | O37 | -0.7270 | -0.5027 | -0.3340 |
[HEBim][Ala] | O38 | -0.7921 | -0.4611 | -0.3255 |
[HEBim][Ala] | N39 | -1.0336 | -0.7204 | -0.2306 |
[HEBim][Ala] | H4 | 0.2228 | 0.1274 | 0.0723 |
[HEBim][Ala] | H5 | 0.2238 | 0.1155 | 0.0697 |
[HEBim][Ala] | H6 | 0.2619 | 0.2064 | 0.0527 |
[HEBim][Ala] | H29 | 0.4241 | 0.3252 | 0.1147 |
ILs-gases | BCP | ρBCP/a.u. | ∇2ρBCP/ a.u. | EHB/(kJ·mol-1) |
---|---|---|---|---|
[HEMim][Glu]-NH3 | O13—H14—N39 | 0.0440 | 0.1054 | 37.96 |
[HEMim][Glu]-CO2 | C27—N36—C39 | 0.0108 | 0.0350 | 6.97 |
[HEMim][Asp]-NH3 | O19—H20—N36 | 0.0442 | 0.1044 | 38.15 |
[HEMim][Asp]-CO2 | C21—N39—C36 | 0.0087 | 0.0290 | 5.01 |
[HEBim][Asp]-NH3 | O14—H15—N45 | 0.0438 | 0.1043 | 37.78 |
[HEBim][Asp]-CO2 | C31—N37—C45 | 0.0075 | 0.0255 | 3.89 |
[HEBim][Ala]-NH3 | O28—H29—N42 | 0.0444 | 0.1045 | 38.34 |
[HEBim][Ala]-CO2 | C34—N37—C42 | 0.0142 | 0.0439 | 10.15 |
[HEBim][His]-NH3 | O17—H18—N49 | 0.0446 | 0.1052 | 38.52 |
[HEBim][His]-CO2 | C41—N44—C49 | 0.0126 | 0.0393 | 8.65 |
Table 3 The bond lengths and electron density of five ionic liquids interacting with gases calculated at B3LYP/6-31’ ++G(d,p) level
ILs-gases | BCP | ρBCP/a.u. | ∇2ρBCP/ a.u. | EHB/(kJ·mol-1) |
---|---|---|---|---|
[HEMim][Glu]-NH3 | O13—H14—N39 | 0.0440 | 0.1054 | 37.96 |
[HEMim][Glu]-CO2 | C27—N36—C39 | 0.0108 | 0.0350 | 6.97 |
[HEMim][Asp]-NH3 | O19—H20—N36 | 0.0442 | 0.1044 | 38.15 |
[HEMim][Asp]-CO2 | C21—N39—C36 | 0.0087 | 0.0290 | 5.01 |
[HEBim][Asp]-NH3 | O14—H15—N45 | 0.0438 | 0.1043 | 37.78 |
[HEBim][Asp]-CO2 | C31—N37—C45 | 0.0075 | 0.0255 | 3.89 |
[HEBim][Ala]-NH3 | O28—H29—N42 | 0.0444 | 0.1045 | 38.34 |
[HEBim][Ala]-CO2 | C34—N37—C42 | 0.0142 | 0.0439 | 10.15 |
[HEBim][His]-NH3 | O17—H18—N49 | 0.0446 | 0.1052 | 38.52 |
[HEBim][His]-CO2 | C41—N44—C49 | 0.0126 | 0.0393 | 8.65 |
ILs-gases | BCP | Bond length/ Å | ρBCP/a.u. | ∇2ρBCP/a.u. | EHB/(kJ·mol-1) |
---|---|---|---|---|---|
[HEBim][His]-NH3-CO2 | O17—H18—N48 | 1.7886 | 0.0445 | 0.1034 | 38.43 |
[HEBim][His]-NH3-CO2 | C41—N44—C53 | 2.9830 | 0.0112 | 0.0345 | 7.35 |
[HEBim][Ala]-NH3-CO2 | O28—H29—N42 | 1.8015 | 0.0436 | 0.1027 | 37.59 |
[HEBim][Ala]-NH3-CO2 | C34—N37—C46 | 2.8661 | 0.0129 | 0.0407 | 8.93 |
Table 4 The bond lengths, binding energies and electron densities of the two ILs interacting with gas calculated at the B3LYP/6-31 ++G(d,p) level
ILs-gases | BCP | Bond length/ Å | ρBCP/a.u. | ∇2ρBCP/a.u. | EHB/(kJ·mol-1) |
---|---|---|---|---|---|
[HEBim][His]-NH3-CO2 | O17—H18—N48 | 1.7886 | 0.0445 | 0.1034 | 38.43 |
[HEBim][His]-NH3-CO2 | C41—N44—C53 | 2.9830 | 0.0112 | 0.0345 | 7.35 |
[HEBim][Ala]-NH3-CO2 | O28—H29—N42 | 1.8015 | 0.0436 | 0.1027 | 37.59 |
[HEBim][Ala]-NH3-CO2 | C34—N37—C46 | 2.8661 | 0.0129 | 0.0407 | 8.93 |
ILs-gases | H-bonds | sign(λ2)ρ(r)/a.u. |
---|---|---|
[HEBim][His]-NH3 | O17—H18…N48 | -0.0452 |
[HEBim][His]-CO2 | C41—N44…C53 | -0.0092 |
[HEBim][Ala]-NH3 | O28—H29…N42 | -0.0436 |
[HEBim][Ala]-CO2 | C34—N37…C46 | -0.0128 |
Table 5 sign(λ2)ρ(r) values for H-bonds between ILs and gases
ILs-gases | H-bonds | sign(λ2)ρ(r)/a.u. |
---|---|---|
[HEBim][His]-NH3 | O17—H18…N48 | -0.0452 |
[HEBim][His]-CO2 | C41—N44…C53 | -0.0092 |
[HEBim][Ala]-NH3 | O28—H29…N42 | -0.0436 |
[HEBim][Ala]-CO2 | C34—N37…C46 | -0.0128 |
1 | Guo J X, Huang C. Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050[J]. Applied Energy, 2020, 259: 114112. |
2 | 王甫, 赵军, 邓帅, 等. 氨法碳捕集中氨逃逸抑制机制研究进展[J]. 化工进展, 2017, 36(12): 4641-4650. |
Wang F, Zhao J, Deng S, et al. Review on development and mechanism of reducing ammonia escape from carbon dioxide capture process using ammonia method[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4641-4650. | |
3 | McEwen A B, McDevitt S F, Koch V R. Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates[J]. Journal of the Electrochemical Society, 1997, 144(4): L84-L86. |
4 | Rogers R D, Seddon K R. Ionic liquids: solvents of the future? [J]. Science, 2003, 302(5646): 792-793. |
5 | Fung Y S, Zhou R Q. Room temperature molten salt as medium for lithium battery[J]. Journal of Power Sources, 1999, 81/82: 891-895. |
6 | Li G H, Zhou Q, Zhang X P, et al. Solubilities of ammonia in basic imidazolium ionic liquids [J]. Fluid Phase Equilibria, 2010, 297(1): 34-39. |
7 | 陈晏杰, 姚月华, 张香平, 等. 基于离子液体的合成氨驰放气中氨回收工艺模拟计算[J]. 过程工程学报, 2011, 11(4): 644-651. |
Chen Y J, Yao Y H, Zhang X P, et al. Simulation and optimization of ammonia recovery with ionic liquid from purge gas in ammonia synthesis plant[J]. The Chinese Journal of Process Engineering, 2011, 11(4): 644-651. | |
8 | Zeng S J, Wang J L, Li P F, et al. Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites[J]. Chemical Engineering Journal, 2019, 370: 81-88. |
9 | Xu Y, Zhao J, Wu W, et al. Experimental and theoretical studies on the influence of ionic liquids as additives on ammonia-based CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 42: 454-460. |
10 | Shi W, Maginn E J. Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([emim][Tf 2N])[J]. AIChE Journal, 2009, 55(9): 2414-2421. |
11 | Shang D W, Zhang X P, Zeng S J, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chemistry, 2017, 19(4): 937-945. |
12 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
13 | Blanchard L A, Dan H C, Beckman E J, et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29. |
14 | Blanchard L A, Gu Z Y, Brennecke J F. High-pressure phase behavior of ionic liquid/CO2 systems[J]. The Journal of Physical Chemistry B, 2001, 105(12): 2437-2444. |
15 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis[J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
16 | Cammarata L, Kazarian S, Salter P, et al. Molecular states of water in room temperature ionic liquids[J]. Physical Chemistry Chemical Physics, 2001, 3(23): 5192-5200. |
17 | Sharma P, Park S D, Baek I H, et al. Effects of anions on absorption capacity of carbon dioxide in acid functionalized ionic liquids[J]. Fuel Processing Technology, 2012, 100: 55-62. |
18 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation. [J]. CIESC Journal, 2020, 71(1): 16-25. | |
19 | 张慧, 张红梅, 沈锦优, 等. 氨基功能型离子液体吸收CO2的性能[J]. 化工学报, 2016, 67(12): 5057-5065. |
Zhang H, Zhang H M, Shen J Y, et al. Absorption performance of CO2 in amino-functionalized task-specific ionic liquids[J]. CIESC Journal, 2016, 67(12): 5057-5065. | |
20 | Gao H S, Bai L, Han J L, et al. Functionalized ionic liquid membranes for CO2 separation[J]. Chemical Communications, 2018, 54(90): 12671-12685. |
21 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
22 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[M]. Wallingford CT: Gaussian Inc., 2013. |
23 | Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies[J]. Molecular Physics, 1970, 19(4): 553-566. |
24 | Bader R F W. Atom in Molecules: A Quantum Theory[M]. New York: Oxford University Press, 1990. |
25 | He H Y, Zhang S J, Liu X M, et al. Structures and hydrogen bonds of biodegradable naphthenate ionic liquids[J]. Fluid Phase Equilibria, 2013, 360: 169-179. |
26 | Zhang Y Q, He H Y, Dong K, et al. A DFT study on lignin dissolution in imidazolium-based ionic liquids[J]. RSC Advances, 2017, 7(21): 12670-12681. |
27 | 张营. 氨基酸离子液体的结构和阴阳离子间相互作用的理论研究[D]. 无锡:江南大学, 2011. |
Zhang Y. Theoretical study on the structure and cation-anion interaction of amino acid based ionic liquids[D]. Wuxi: Jiangnan University, 2011. | |
28 | Li Z J, Zhang X P, Dong H F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Advances, 2015, 5(99): 81362-81370. |
29 | Yuan L, Zhang X P, Ren B Z, et al. Dual-functionalized protic ionic liquids for efficient absorption of NH3 through synergistically physicochemical interaction[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(6): 1815-1824. |
30 | Johnson E R, Keinan S, Mori-Sánchez P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[8] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[9] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[12] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[13] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[14] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||