CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3659-3668.DOI: 10.11949/0438-1157.20220523
• Surface and interface engineering • Previous Articles Next Articles
Jingze CUI(), Qiong TANG, Chen CHEN, Yujie LIU, Hong XU, Lei LIU(
), Jinxiang DONG
Received:
2022-04-11
Revised:
2022-05-02
Online:
2022-09-06
Published:
2022-08-05
Contact:
Lei LIU
崔敬泽(), 汤琼, 陈晨, 刘宇婕, 徐红, 刘雷(
), 董晋湘
通讯作者:
刘雷
作者简介:
崔敬泽(1997—),男,硕士研究生,515309165@qq.com
基金资助:
CLC Number:
Jingze CUI, Qiong TANG, Chen CHEN, Yujie LIU, Hong XU, Lei LIU, Jinxiang DONG. Synthesis of high viscosity alkylated acenaphthene and investigation of their lubrication property[J]. CIESC Journal, 2022, 73(8): 3659-3668.
崔敬泽, 汤琼, 陈晨, 刘宇婕, 徐红, 刘雷, 董晋湘. 高黏度烷基苊基础油的合成及润滑性能研究[J]. 化工学报, 2022, 73(8): 3659-3668.
样品名称 | 烯烃/苊 (摩尔比) | 产物分布/% | |||
---|---|---|---|---|---|
单烷 基苊 | 二烷 基苊 | 三烷 基苊 | 四烷 基苊 | ||
己基苊-2 | 2/1 | 22.60 | 54.50 | 22.39 | 0.51 |
己基苊-3 | 3/1 | 3.55 | 31.48 | 58.37 | 6.59 |
辛基苊-2 | 2/1 | 25.08 | 46.27 | 28.00 | 0.64 |
辛基苊-3 | 3/1 | 7.17 | 38.10 | 50.51 | 4.22 |
Table 1 Product distribution of hexylacenaphthene and octylacenaphthene
样品名称 | 烯烃/苊 (摩尔比) | 产物分布/% | |||
---|---|---|---|---|---|
单烷 基苊 | 二烷 基苊 | 三烷 基苊 | 四烷 基苊 | ||
己基苊-2 | 2/1 | 22.60 | 54.50 | 22.39 | 0.51 |
己基苊-3 | 3/1 | 3.55 | 31.48 | 58.37 | 6.59 |
辛基苊-2 | 2/1 | 25.08 | 46.27 | 28.00 | 0.64 |
辛基苊-3 | 3/1 | 7.17 | 38.10 | 50.51 | 4.22 |
产品名称 | 密度/ (g·cm-3) | 运动黏度/(mm2·s-1) | 黏度指数 | 苯胺点/℃ | 倾点/℃ | 闪点/℃ | 起始氧化温度/℃ | |
---|---|---|---|---|---|---|---|---|
40℃ | 100℃ | |||||||
己基苊-2 | 0.9534 | 171.9 | 10.1 | — | 15.2 | -18 | 201 | 192 |
己基苊-3 | 0.9343 | 349.6 | 15.4 | — | 34.5 | -16 | 208 | 198 |
辛基苊-2 | 0.9372 | 190.5 | 12.5 | 24 | 38.5 | -23 | 219 | 201 |
辛基苊-3 | 0.9186 | 331.6 | 19.5 | 52 | 62.4 | -19 | 236 | 205 |
Table 2 Physicochemical properties of alkylated acenaphthenes
产品名称 | 密度/ (g·cm-3) | 运动黏度/(mm2·s-1) | 黏度指数 | 苯胺点/℃ | 倾点/℃ | 闪点/℃ | 起始氧化温度/℃ | |
---|---|---|---|---|---|---|---|---|
40℃ | 100℃ | |||||||
己基苊-2 | 0.9534 | 171.9 | 10.1 | — | 15.2 | -18 | 201 | 192 |
己基苊-3 | 0.9343 | 349.6 | 15.4 | — | 34.5 | -16 | 208 | 198 |
辛基苊-2 | 0.9372 | 190.5 | 12.5 | 24 | 38.5 | -23 | 219 | 201 |
辛基苊-3 | 0.9186 | 331.6 | 19.5 | 52 | 62.4 | -19 | 236 | 205 |
1 | Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars[J]. Tribology International, 2019, 135: 389-396. |
2 | Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284. |
3 | Fan M J, Ai J, Hu C H, et al. Naphthoate based lubricating oil with high oxidation stability and lubricity[J]. Tribology International, 2019, 138: 204-210. |
4 | Liu S B, Bhattacharjee R, Li S, et al. Thiol-promoted catalytic synthesis of high-performance furan-containing lubricant base oils from biomass derived 2-alkylfurans and ketones[J]. Green Chemistry, 2020, 22(22): 7896-7906. |
5 | Fox I E. Numerical evaluation of the potential for fuel economy improvement due to boundary friction reduction within heavy-duty diesel engines[J]. Tribology International, 2005, 38(3): 265-275. |
6 | Hu S J, Zhu J H, Wu B C, et al. Green synthesis of ester base oil with high viscosity(Ⅰ): Catalyst preparation, characterization, evaluation, and mechanism analysis[J]. Fuel, 2020, 274: 117802. |
7 | Jiang H B, Xu X L, Hong X Z, et al. Preparation of high viscosity PAO from mixed alpha-olefins over metallocene catalyst[J]. China Petroleum Processing & Petrochemical Technology, 2018, 20(2): 90-96. |
8 | Hu S J, Zhu J H, Wu B C, et al. Green synthesis of ester base oil with high viscosity(Ⅱ): Reaction kinetics study[J]. Chemical Engineering Research and Design, 2021, 165: 51-60. |
9 | Li L, Zhao X R, Chen C, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
10 | Chen C, Tang Q, Xu H, et al. Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties[J]. Chinese Journal of Chemical Engineering, 2021, 39: 306-313. |
11 | Nagendramma P, Kaul S. Development of ecofriendly/biodegradable lubricants: an overview[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 764-774. |
12 | Yang T, Wang F J, Huang J P, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960. |
13 | Granda M, Blanco C, Alvarez P, et al. Chemicals from coal coking[J]. Chemical Reviews, 2014, 114(3): 1608-1636. |
14 | 谷小会. 煤焦油分离方法及组分性质研究现状与展望[J]. 洁净煤技术, 2018, 24(4): 1-6, 12. |
Gu X H. Status and prospect of separation methods and composition characteristics of coal tar[J]. Clean Coal Technology, 2018, 24(4): 1-6, 12. | |
15 | Ma Z H, Wei X Y, Liu G H, et al. Value-added utilization of high-temperature coal tar: a review[J]. Fuel, 2021, 292: 119954. |
16 | 汪廷贵, 张乐涛, 蔡国星, 等. 一种烷基萘基础油的合成及润滑性能研究[J]. 石油炼制与化工, 2013, 44(11): 96-99. |
Wang T G, Zhang L T, Cai G X, et al. Study on synthesis of alkyl naphthalene base oils and their lubricating properties[J]. Petroleum Processing and Petrochemicals, 2013, 44(11): 96-99. | |
17 | 刘雷, 陈晨, 李磊, 等. 一种利用离子液体催化制备多烷基萘的方法及其应用: 109824467A[P]. 2019-05-31. |
Liu L, Chen C, Li L, et al. Method for preparing polyalkylnaphthalene through catalysis of ionic liquid and application of method: 109824467A[P]. 2019-05-31. | |
18 | Peters A T. Acenaphthene series(Ⅰ): Mono- and di-tert.-butyl-acenaphthene, -acenaphthenequinone, and -naphthalic anhydride, and their derivatives[J]. Journal of the Chemical Society (Resumed), 1942: 562-565. |
19 | Nürsten H E, Peters A T. Acenaphthene series(Ⅲ): Orientation of tert.-butyl- and di-tert.-butyl-acenaphthene, and preparation of new derivatives[J]. Journal of the Chemical Society(Resumed), 1950: 729-736. |
20 | Illingworth E, Peters A T. Acenaphthene series(Ⅶ): The three isomeric tert.-butylacenaphthenes. Migration of tert.-butyl groups and disproportionation. Preparation and orientation of 1,3,6-tri-tert.-butylacenaphthene[J]. Journal of the Chemical Society (Resumed), 1952: 2730-2735. |
21 | Peters A T. Mechanisms of reactions in the acenaphthene series. Migration of t-butyl, and disproportionate[J]. Nature, 1965, 205(4967): 170-171. |
22 | Mock W L, Tsao L I. Isopropylation of acenaphthene[J]. Synthetic Communications, 1991, 21(3): 371-378. |
23 | Chen S, Wu T T, Zhao C. Conversion of lipid into high-viscosity branched bio-lubricant base oil[J]. Green Chemistry, 2020, 22(21): 7348-7354. |
24 | Covitch M J, Trickett K J. How polymers behave as viscosity index improvers in lubricating oils[J]. Advances in Chemical Engineering and Science, 2015, 5(2): 134-151. |
25 | Martini A, Ramasamy U S, Len M. Review of viscosity modifier lubricant additives[J]. Tribology Letters, 2018, 66(2): 1-14. |
26 | Fan M J, Zhang C Y, Wen P, et al. High-performance lubricant base stocks from biorenewable Gallic acid: systematic study on their physicochemical and tribological properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9513-9523. |
27 | Zhmud B. Beyond the aniline point: critical solution point for the oil/aniline system as a measure of oil solubility[J]. Fuel, 2007, 86(16): 2545-2550. |
28 | Elhamarnah Y A, Nasser M, Qiblawey H, et al. A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents[J]. Journal of Molecular Liquids, 2019, 277: 932-958. |
29 | Zhou S Q, Ni R, Funfschilling D. Effects of shear rate and temperature on viscosity of alumina polyalphaolefins nanofluids[J]. Journal of Applied Physics, 2010, 107(5): 054317. |
30 | Kerni L, Raina A, Haq M I U. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes[J]. Wear, 2019, 426/427: 819-827. |
31 | Liu X X, Li Q, Gao X X, et al. The palm oil-based microemulsion: fabrication, characterization and rheological properties[J]. Journal of Molecular Liquids, 2020, 302: 112527. |
32 | Jiang D, Hu L T, Feng D P. Crown-type ionic liquids as lubricants for steel-on-steel system[J]. Tribology Letters, 2011, 41(2): 417-424. |
33 | Mendonça A C F, Malfreyt P, Pádua A A H. Interactions and ordering of ionic liquids at a metal surface[J]. Journal of Chemical Theory and Computation, 2012, 8(9): 3348-3355. |
34 | Yu Q L, Zhang C Y, Dong R, et al. Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids[J]. Friction, 2021, 9(2): 344-355. |
35 | Guo Y X, Qiao D, Han Y Y, et al. Application of alkylphosphate ionic liquids as lubricants for ceramic material[J]. Industrial & Engineering Chemistry Research, 2015, 54(51): 12813-12825. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[6] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[7] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[8] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[9] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[10] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[11] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[12] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[13] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||