CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3647-3658.DOI: 10.11949/0438-1157.20220269
• Process system engineering • Previous Articles Next Articles
Jinyu GUO(), Zhe WANG, Yuan LI()
Received:
2022-02-24
Revised:
2022-04-29
Online:
2022-09-06
Published:
2022-08-05
Contact:
Yuan LI
通讯作者:
李元
作者简介:
郭金玉(1975—),女,博士,副教授,shandong401@sina.com
基金资助:
CLC Number:
Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis[J]. CIESC Journal, 2022, 73(8): 3647-3658.
郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658.
Item | KPCA | KECA | KICA | KEICA | |||||
---|---|---|---|---|---|---|---|---|---|
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
FDR/% | 70.25 | 8.00 | 7.50 | 64.38 | 20.31 | 77.00 | 90.25 | 100 | 100 |
FAR/% | 1.25 | 1.25 | 1.25 | 1.88 | 1.25 | 1.88 | 1.88 | 0 | 0.63 |
Table 1 Comparison of simulation results for four algorithms in numerical example
Item | KPCA | KECA | KICA | KEICA | |||||
---|---|---|---|---|---|---|---|---|---|
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
FDR/% | 70.25 | 8.00 | 7.50 | 64.38 | 20.31 | 77.00 | 90.25 | 100 | 100 |
FAR/% | 1.25 | 1.25 | 1.25 | 1.88 | 1.25 | 1.88 | 1.88 | 0 | 0.63 |
故障 序号 | FDR/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
KPCA | KECA | KICA | KEICA | ||||||
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
1 | 99.50 | 99.25 | 99.37 | 99.13 | 99.69 | 99.25 | 99.25 | 100 | 99.63 |
2 | 98.60 | 98.25 | 98.54 | 98.63 | 98.85 | 96.50 | 98.00 | 99.25 | 98.63 |
4 | 88.00 | 14.00 | 25.60 | 40.25 | 90.63 | 57.50 | 64.63 | 100 | 85.25 |
7 | 100 | 97.00 | 67.80 | 99.63 | 100 | 99.38 | 92.75 | 100 | 100 |
11 | 65.38 | 37.75 | 58.88 | 63.38 | 76.56 | 70.75 | 68.50 | 83.63 | 68.00 |
12 | 96.87 | 98.60 | 96.35 | 96.00 | 99.69 | 87.88 | 97.63 | 99.63 | 99.50 |
13 | 95.87 | 94.10 | 95.31 | 93.63 | 96.35 | 95.50 | 95.25 | 96.25 | 95.63 |
17 | 86.88 | 79.00 | 85.25 | 83.38 | 92.70 | 87.13 | 82.75 | 97.25 | 90.88 |
20 | 45.25 | 38.60 | 50.10 | 38.63 | 70.83 | 59.38 | 63.00 | 77.75 | 63.13 |
Table 2 Comparison of FDRs for four algorithms in TE process
故障 序号 | FDR/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
KPCA | KECA | KICA | KEICA | ||||||
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
1 | 99.50 | 99.25 | 99.37 | 99.13 | 99.69 | 99.25 | 99.25 | 100 | 99.63 |
2 | 98.60 | 98.25 | 98.54 | 98.63 | 98.85 | 96.50 | 98.00 | 99.25 | 98.63 |
4 | 88.00 | 14.00 | 25.60 | 40.25 | 90.63 | 57.50 | 64.63 | 100 | 85.25 |
7 | 100 | 97.00 | 67.80 | 99.63 | 100 | 99.38 | 92.75 | 100 | 100 |
11 | 65.38 | 37.75 | 58.88 | 63.38 | 76.56 | 70.75 | 68.50 | 83.63 | 68.00 |
12 | 96.87 | 98.60 | 96.35 | 96.00 | 99.69 | 87.88 | 97.63 | 99.63 | 99.50 |
13 | 95.87 | 94.10 | 95.31 | 93.63 | 96.35 | 95.50 | 95.25 | 96.25 | 95.63 |
17 | 86.88 | 79.00 | 85.25 | 83.38 | 92.70 | 87.13 | 82.75 | 97.25 | 90.88 |
20 | 45.25 | 38.60 | 50.10 | 38.63 | 70.83 | 59.38 | 63.00 | 77.75 | 63.13 |
故障 序号 | FAR/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
KPCA | KECA | KICA | KEICA | ||||||
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
1 | 5.60 | 0 | 0 | 2.50 | 1.25 | 1.25 | 0.63 | 3.13 | 0.63 |
2 | 3.70 | 1.25 | 0 | 3.13 | 0.63 | 0 | 0.63 | 3.75 | 0 |
4 | 8.00 | 0.60 | 0 | 4.38 | 1.25 | 1.88 | 1.88 | 5.00 | 0.63 |
7 | 1.80 | 0 | 0 | 2.50 | 0.63 | 3.13 | 3.75 | 1.88 | 1.25 |
11 | 5.63 | 1.25 | 2.50 | 3.75 | 3.75 | 4.38 | 2.50 | 4.38 | 2.50 |
12 | 4.37 | 1.25 | 2.50 | 3.75 | 19.38 | 1.88 | 1.88 | 1.25 | 22.50 |
13 | 1.87 | 0 | 0 | 0.63 | 2.50 | 1.88 | 2.50 | 3.13 | 1.88 |
17 | 5.63 | 0.63 | 1.25 | 6.88 | 1.88 | 4.38 | 3.13 | 5.00 | 1.25 |
20 | 1.87 | 0 | 0.63 | 1.88 | 0 | 0 | 0 | 3.13 | 0.63 |
Table 3 Comparison of FARs for four algorithms in TE process
故障 序号 | FAR/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
KPCA | KECA | KICA | KEICA | ||||||
SPE | T2 | SPE | T2 | CS | SPE | I2 | SPE | I2 | |
1 | 5.60 | 0 | 0 | 2.50 | 1.25 | 1.25 | 0.63 | 3.13 | 0.63 |
2 | 3.70 | 1.25 | 0 | 3.13 | 0.63 | 0 | 0.63 | 3.75 | 0 |
4 | 8.00 | 0.60 | 0 | 4.38 | 1.25 | 1.88 | 1.88 | 5.00 | 0.63 |
7 | 1.80 | 0 | 0 | 2.50 | 0.63 | 3.13 | 3.75 | 1.88 | 1.25 |
11 | 5.63 | 1.25 | 2.50 | 3.75 | 3.75 | 4.38 | 2.50 | 4.38 | 2.50 |
12 | 4.37 | 1.25 | 2.50 | 3.75 | 19.38 | 1.88 | 1.88 | 1.25 | 22.50 |
13 | 1.87 | 0 | 0 | 0.63 | 2.50 | 1.88 | 2.50 | 3.13 | 1.88 |
17 | 5.63 | 0.63 | 1.25 | 6.88 | 1.88 | 4.38 | 3.13 | 5.00 | 1.25 |
20 | 1.87 | 0 | 0.63 | 1.88 | 0 | 0 | 0 | 3.13 | 0.63 |
11 | 黄丽瑾, 施俊, 钟瑾. 基于核熵成分分析的数据降维[J]. 计算机工程, 2012, 38(2): 175-177. |
Huang L J, Shi J, Zhong J. Data dimension reduction based on kernel entropy component analysis[J]. Computer Engineering, 2012, 38(2): 175-177. | |
12 | 邓明月, 刘建昌, 许鹏, 等. 基于KECA的非线性工业过程故障检测与诊断新方法[J]. 化工学报, 2020, 71(5): 2151-2163. |
Deng M Y, Liu J C, Xu P, et al. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA[J]. CIESC Journal, 2020, 71(5): 2151-2163. | |
13 | Xia Y D, Ding Q, Li Z, et al. Fault detection for centrifugal chillers using a kernel entropy component analysis (KECA) method[J]. Building Simulation, 2021, 14(1): 53-61. |
14 | 郭金玉, 李文涛, 李元. 在线压缩KECA的自适应算法在故障检测中的应用[J]. 化工学报, 2021, 72(8): 4227-4238. |
Guo J Y, Li W T, Li Y. Application of adaptive algorithm of online reduced KECA in fault detection[J]. CIESC Journal, 2021, 72(8): 4227-4238. | |
15 | 齐咏生, 张海利, 高学金, 等. 基于KECA的化工过程故障监测新方法[J]. 化工学报, 2016, 67(3): 1063-1069. |
Qi Y S, Zhang H L, Gao X J, et al. Novel fault monitoring strategy for chemical process based on KECA[J]. CIESC Journal, 2016, 67(3): 1063-1069. | |
16 | Chen J Y, Yu J. Independent component analysis mixture model based dissimilarity method for performance monitoring of non-Gaussian dynamic processes with shifting operating conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5055-5066. |
17 | Ajami A, Daneshvar M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using independent component analysis (ICA)[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 728-735. |
18 | Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6731-6741. |
19 | Lee J M, Qin S J, Lee I B. Fault detection of non-linear processes using kernel independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2007, 85(4): 526-536. |
20 | Sun D D, Gong X F, Chen Y L. Integrating canonical variate analysis and kernel independent component analysis for Tennessee Eastman process monitoring[J]. Journal of Chemical Engineering of Japan, 2020, 53(3): 126-133. |
21 | Fan J C, Wang Y Q. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis[J]. Information Sciences, 2014, 259: 369-379. |
22 | Ma J, Li G, Zhou D H. Fault prognosis technology for non-Gaussian and nonlinear processes based on KICA reconstruction[J]. The Canadian Journal of Chemical Engineering, 2018, 96(2): 515-520. |
23 | Zhong H, Liu J X, Wang L M, et al. Bearing fault diagnosis based on kernel independent component analysis and antlion optimization[J]. Transactions of the Institute of Measurement and Control, 2021, 43(16): 3573-3587. |
24 | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
Zhang C, Pan L Z, Li Y. Fault detection and diagnosis method based on weighted statistical feature KICA[J]. CIESC Journal, 2022, 73(2): 827-837. | |
25 | Hastings M B, González I, Kallin A B, et al. Measuring Renyi entanglement entropy with quantum Monte Carlo[J]. Physical Review Letters, 2010, 104(15): 157201. |
26 | Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076. |
27 | Jiang Q C, Yan X F, Lv Z M, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6): 1181-1186. |
28 | Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2916-2957. |
29 | Zhou Z, Du N, Xu J Y, et al. Randomized kernel principal component analysis for modeling and monitoring of nonlinear industrial processes with massive data[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10410-10417. |
30 | 郭金玉, 李涛, 李元. 基于核主成分空间支持向量机的过程监视方法[J]. 山东科技大学学报(自然科学版), 2022, 41(1): 114-122. |
Guo J Y, Li T, Li Y. Process monitoring method based on support vector machine in kernel principal component space[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(1): 114-122. | |
31 | Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
1 | 周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术: 基于主元分析与偏最小二乘的方法[M]. 北京: 科学出版社, 2011: 1-76. |
Zhou D H, Li G, Li Y. Data-Driven Fault Diagnosis Techniques for Industrial Processes: Based on Principal Component Analysis and Partial Least Squares[M]. Beijing: Science Press, 2011: 1-76. | |
2 | Lahdhiri H, Said M, Abdellafou K B, et al. Supervised process monitoring and fault diagnosis based on machine learning methods[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5/6/7/8): 2321-2337. |
3 | Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11. |
4 | Jaffel I, Taouali O, Elaissi E, et al. A new online fault detection method based on PCA technique[J]. IMA Journal of Mathematical Control and Information, 2013, 31(4): 487-499. |
5 | Fazai R, Taouali O, Harkat M F, et al. A new fault detection method for nonlinear process monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9/10/11/12): 3425-3436. |
6 | Cho J H, Lee J M, Choi S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1): 279-288. |
7 | Choi S W, Lee C, Lee J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1): 55-67. |
8 | Nguyen V H, Golinval J C. Fault detection based on kernel principal component analysis[J]. Engineering Structures, 2010, 32(11): 3683-3691. |
9 | Jenssen R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860. |
10 | Jenssen R, Principe J C, Erdogmus D, et al. The Cauchy-Schwarz divergence and Parzen windowing: connections to graph theory and Mercer kernels[J]. Journal of the Franklin Institute, 2006, 343(6): 614-629. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[4] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[5] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[6] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[7] | Rongshan BI, Zhihui HAN, Shaohui TAO, Xiaoyan SUN, Shuguang XIANG. Recognizing historical operating conditions by determining the density peaks at kernel density estimation of heat diffusion [J]. CIESC Journal, 2022, 73(4): 1615-1622. |
[8] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[9] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[10] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[11] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[12] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
[13] | XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections [J]. CIESC Journal, 2020, 71(12): 5655-5663. |
[14] | Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems [J]. CIESC Journal, 2020, 71(11): 5237-5245. |
[15] | Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA [J]. CIESC Journal, 2019, 70(9): 3441-3448. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||