CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3994-4002.DOI: 10.11949/0438-1157.20220665
• Process system engineering • Previous Articles Next Articles
Yalin WANG(), Yuqing PAN, Chenliang LIU()
Received:
2022-05-09
Revised:
2022-05-26
Online:
2022-10-09
Published:
2022-09-05
Contact:
Chenliang LIU
通讯作者:
刘晨亮
作者简介:
王雅琳(1973—),女,博士,教授,ylwang@csu.edu.cn
基金资助:
CLC Number:
Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction[J]. CIESC Journal, 2022, 73(9): 3994-4002.
王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002.
Add to citation manager EndNote|Ris|BibTeX
故障编号 | 故障描述 |
---|---|
F1 | 第3000个样本以后,对变量 |
F2 | 第3000个样本以后,对 |
F3 | 第4500个样本以后,对 |
Table 1 Fault setting for numerical example
故障编号 | 故障描述 |
---|---|
F1 | 第3000个样本以后,对变量 |
F2 | 第3000个样本以后,对 |
F3 | 第4500个样本以后,对 |
方法 | 故障类型 | FAR | FDR |
---|---|---|---|
PCA | F1 | 4.97% | 100% |
F2 | 5.63% | 26.20% | |
F3 | 4.98% | 99.80% | |
KPCA | F1 | 5.03% | 99.40% |
F2 | 4.17% | 0.40% | |
F3 | 5.04% | 99.40% | |
DPCA | F1 | 4.00% | 91.09% |
F2 | 4.13% | 89.40% | |
F3 | 3.58% | 72.60% | |
LSTM-CCA | F1 | 4.63% | 97.41% |
F2 | 4.83% | 87.76% | |
F3 | 4.97% | 71.78% | |
GSA-LSTM-CCA | F1 | 1.50% | 100% |
F2 | 1.98% | 99.60% | |
F3 | 1.90% | 100% |
Table 2 Comparison of experimental results on numerical examples
方法 | 故障类型 | FAR | FDR |
---|---|---|---|
PCA | F1 | 4.97% | 100% |
F2 | 5.63% | 26.20% | |
F3 | 4.98% | 99.80% | |
KPCA | F1 | 5.03% | 99.40% |
F2 | 4.17% | 0.40% | |
F3 | 5.04% | 99.40% | |
DPCA | F1 | 4.00% | 91.09% |
F2 | 4.13% | 89.40% | |
F3 | 3.58% | 72.60% | |
LSTM-CCA | F1 | 4.63% | 97.41% |
F2 | 4.83% | 87.76% | |
F3 | 4.97% | 71.78% | |
GSA-LSTM-CCA | F1 | 1.50% | 100% |
F2 | 1.98% | 99.60% | |
F3 | 1.90% | 100% |
变量分组 | 变量编号 | 故障描述 |
---|---|---|
Ⅰ | 1 | 模内压力 |
2 | 模内温度 | |
3 | 模温机水流实际流量 | |
Ⅱ | 4 | 实际螺杆位置 |
5 | 喷嘴头射出压力 |
Table 3 Description of fault variables during injection molding
变量分组 | 变量编号 | 故障描述 |
---|---|---|
Ⅰ | 1 | 模内压力 |
2 | 模内温度 | |
3 | 模温机水流实际流量 | |
Ⅱ | 4 | 实际螺杆位置 |
5 | 喷嘴头射出压力 |
故障编号 | 故障描述 |
---|---|
F1 | 第3000个样本以后,对模温机水流实际流量设 置幅值为10的阶跃故障 |
F2 | 第3000个样本以后,对实际螺杆位置设置幅值 为10的阶跃故障 |
F3 | 第4500个样本以后,对实际螺杆位置设置斜率 为0.04的斜坡故障 |
Table 4 Fault setting during injection molding
故障编号 | 故障描述 |
---|---|
F1 | 第3000个样本以后,对模温机水流实际流量设 置幅值为10的阶跃故障 |
F2 | 第3000个样本以后,对实际螺杆位置设置幅值 为10的阶跃故障 |
F3 | 第4500个样本以后,对实际螺杆位置设置斜率 为0.04的斜坡故障 |
方法 | 故障类型 | FAR | FDR |
---|---|---|---|
PCA | F1 | 5.00% | 2.45% |
F2 | 5.00% | 2.30% | |
F3 | 5.02% | 100% | |
KPCA | F1 | 4.97% | 2.80% |
F2 | 4.97% | 58.15% | |
F3 | 4.98% | 100% | |
DPCA | F1 | 14.23% | 11.25% |
F2 | 14.23% | 5.88% | |
F3 | 10.57% | 72.46% | |
LSTM-CCA | F1 | 4.90% | 60.44% |
F2 | 5.03% | 80.99% | |
F3 | 5.07% | 86.31% | |
GSA-LSTM-CCA | F1 | 4.88% | 96.30% |
F2 | 4.87% | 100% | |
F3 | 4.93% | 100% |
Table 5 Comparison of experimental results on injection molding process
方法 | 故障类型 | FAR | FDR |
---|---|---|---|
PCA | F1 | 5.00% | 2.45% |
F2 | 5.00% | 2.30% | |
F3 | 5.02% | 100% | |
KPCA | F1 | 4.97% | 2.80% |
F2 | 4.97% | 58.15% | |
F3 | 4.98% | 100% | |
DPCA | F1 | 14.23% | 11.25% |
F2 | 14.23% | 5.88% | |
F3 | 10.57% | 72.46% | |
LSTM-CCA | F1 | 4.90% | 60.44% |
F2 | 5.03% | 80.99% | |
F3 | 5.07% | 86.31% | |
GSA-LSTM-CCA | F1 | 4.88% | 96.30% |
F2 | 4.87% | 100% | |
F3 | 4.93% | 100% |
1 | Jiang Q C, Gao F R, Yan X F, et al. Multiobjective two-dimensional CCA-based monitoring for successive batch processes with industrial injection molding application[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3825-3834. |
2 | 薛峰, 李欣铜, 周琨, 等. 基于GLSAFIS的氟化工过程操作单元可靠性监测[J]. 化工学报, 2021, 72(11): 5696-5706. |
Xue F, Li X T, Zhou K, et al. Reliability monitoring of fluorochemical process operation unit based on GLSAFIS[J]. CIESC Journal, 2021, 72(11): 5696-5706. | |
3 | 唐俊苗, 俞海珍, 史旭华, 等. 基于潜变量自回归算法的化工过程动态监测方法[J]. 化工学报, 2019, 70(3): 987-994. |
Tang J M, Yu H Z, Shi X H, et al. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm[J]. CIESC Journal, 2019, 70(3): 987-994. | |
4 | Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE Journal, 1994, 40(8): 1361-1375. |
5 | Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 97-108. |
6 | Yoo C K, Lee J M, Vanrolleghem P A, et al. On-line monitoring of batch processes using multiway independent component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2): 151-163. |
7 | Hu K L, Yuan J Q. Multivariate statistical process control based on multiway locality preserving projections[J]. Journal of Process Control, 2008, 18(7/8): 797-807. |
8 | Chen Z W, Ding S X, Zhang K, et al. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process[J]. Control Engineering Practice, 2016, 46: 51-58. |
9 | Yao Y Q, Li Y, Jiang B B, et al. Multiple kernel k-means clustering by selecting representative kernels[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4983-4996. |
10 | Kurkova V, Coufal D. Translation-invariant kernels for multivariable approximation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 5072-5081. |
11 | Pilario K E S, Cao Y, Shafiee M. A kernel design approach to improve kernel subspace identification[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6171-6180. |
12 | Samuel R T, Cao Y. Kernel canonical variate analysis for nonlinear dynamic process monitoring[J]. IFAC-PapersOnLine, 2015, 48(8): 605-610. |
13 | Jiang Q C, Yan X F. Locally weighted canonical correlation analysis for nonlinear process monitoring[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13783-13792. |
14 | 高学金, 刘腾飞, 徐子东, 等. 基于循环自动编码器的间歇过程故障监测[J]. 化工学报, 2020, 71(7): 3172-3179. |
Gao X J, Liu T F, Xu Z D, et al. Intermittent process fault monitoring based on recurrent autoencoder[J]. CIESC Journal, 2020, 71(7): 3172-3179. | |
15 | Pal A, Hsieh S H. Deep-learning-based visual data analytics for smart construction management[J]. Automation in Construction, 2021, 131: 103892. |
16 | Yan X Q, Hu S Z, Mao Y Q, et al. Deep multi-view learning methods: a review[J]. Neurocomputing, 2021, 448: 106-129. |
17 | Cosgriff C V, Celi L A. Deep learning for risk assessment: all about automatic feature extraction[J]. British Journal of Anaesthesia, 2020, 124(2): 131-133. |
18 | Jiang Q C, Yan X F. Learning deep correlated representations for nonlinear process monitoring[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6200-6209. |
19 | Zhan Z H, Li J Y, Zhang J. Evolutionary deep learning: a survey[J]. Neurocomputing, 2022, 483: 42-58. |
20 | Liu X L. Feature recognition of English based on deep belief neural network and big data analysis[J]. Computational Intelligence and Neuroscience, 2021: 5609885. |
21 | Chen Z, Liang K, Ding S X, et al. A comparative study of deep neural network-aided canonical correlation analysis-based process monitoring and fault detection methods[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021: 1-15. |
22 | Bai L, Cui L X, Jiao Y H, et al. Learning backtrackless aligned-spatial graph convolutional networks for graph classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 783-798. |
23 | Ruiz L, Gama F, Ribeiro A. Graph neural networks: architectures, stability, and transferability[J]. Proceedings of the IEEE, 2021, 109(5): 660-682. |
24 | Zou D M, Lerman G. Graph convolutional neural networks via scattering[J]. Applied and Computational Harmonic Analysis, 2020, 49(3): 1046-1074. |
25 | Chen K J, Hu J, Zhang Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(1): 119-131. |
26 | Zhang D C, Stewart E, Entezami M, et al. Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement, 2020, 156: 107585. |
27 | Chen Z, Xu J, Peng T, et al. Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge[J]. IEEE Transactions on Cybernetics, 2021: 1-13. |
28 | Rossi R A, Zhou R, Ahmed N K. Deep inductive graph representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 32(3): 438-452. |
29 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
30 | Chen Z W, Cao Y, Ding S X, et al. A distributed canonical correlation analysis-based fault detection method for plant-wide process monitoring[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2710-2720. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[10] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[11] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[12] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[13] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[14] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[15] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||