CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3983-3993.DOI: 10.11949/0438-1157.20220487
• Process system engineering • Previous Articles Next Articles
Jiawang YONG1(), Qianqian ZHAO2, Nenglian FENG2
Received:
2022-04-03
Revised:
2022-05-19
Online:
2022-10-09
Published:
2022-09-05
Contact:
Jiawang YONG
通讯作者:
雍加望
作者简介:
雍加望(1988—),男,博士,讲师,yongjw@bjut.edu.cn
基金资助:
CLC Number:
Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model[J]. CIESC Journal, 2022, 73(9): 3983-3993.
雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993.
Add to citation manager EndNote|Ris|BibTeX
变量 | 主要定义 | 变量 | 主要定义 |
---|---|---|---|
阳极氢气质量/kg | 供应歧管质量/kg | ||
阴极氧气质量/kg | 空压机转速/(r/min) | ||
阴极水质量/kg | 回流管道压力/Pa | ||
阳极水质量/kg | Vfc | 电堆电压/V | |
供应歧管压力/Pa | vcm | 压缩机电机电压/V | |
阴极氮气质量/kg | Ist | 负载电流/A |
Table 1 Definition of major variables of the model
变量 | 主要定义 | 变量 | 主要定义 |
---|---|---|---|
阳极氢气质量/kg | 供应歧管质量/kg | ||
阴极氧气质量/kg | 空压机转速/(r/min) | ||
阴极水质量/kg | 回流管道压力/Pa | ||
阳极水质量/kg | Vfc | 电堆电压/V | |
供应歧管压力/Pa | vcm | 压缩机电机电压/V | |
阴极氮气质量/kg | Ist | 负载电流/A |
环境温度 | 电堆工作温度 | 氢气供给压力 | 空气供给压力 | 过氧比 |
---|---|---|---|---|
25℃ | 72℃ | 3 atm | 3 atm | 2 |
Table 2 Operating parameter setting
环境温度 | 电堆工作温度 | 氢气供给压力 | 空气供给压力 | 过氧比 |
---|---|---|---|---|
25℃ | 72℃ | 3 atm | 3 atm | 2 |
故障 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
f1 | 1 | 1 | 1 | 1 |
f2 | 0 | 0 | 0 | 1 |
f3 | 1 | 0 | 1 | 1 |
f4 | 1 | 0 | 1 | 1 |
f5 | 0 | 0 | 0 | 1 |
Table 3 Fault signature matrix
故障 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
f1 | 1 | 1 | 1 | 1 |
f2 | 0 | 0 | 0 | 1 |
f3 | 1 | 0 | 1 | 1 |
f4 | 1 | 0 | 1 | 1 |
f5 | 0 | 0 | 0 | 1 |
故障 | r2/r1 | r3/r1 | … | rn /r1 |
---|---|---|---|---|
f1 | … | |||
f2 | … | |||
f3 | … | |||
fm | … |
Table 4 Theoretical relative fault sensitivity matrix
故障 | r2/r1 | r3/r1 | … | rn /r1 |
---|---|---|---|---|
f1 | … | |||
f2 | … | |||
f3 | … | |||
fm | … |
故障 | r2/ r1 | r3/ r1 | r4/r1 |
---|---|---|---|
f1 | 0.0147 | 0.3681 | 6.86×10-7 |
f2 | 0.3850 | 0.0736 | 2.43×10-4 |
f3 | 0.0071 | 0.1977 | 1.97×10-7 |
f4 | 0.0083 | 0.1895 | 1.81×10-7 |
f5 | 0.0402 | 0.1448 | 3.34×10-8 |
Table 5 Theoretical relative fault sensitivity matrix results
故障 | r2/ r1 | r3/ r1 | r4/r1 |
---|---|---|---|
f1 | 0.0147 | 0.3681 | 6.86×10-7 |
f2 | 0.3850 | 0.0736 | 2.43×10-4 |
f3 | 0.0071 | 0.1977 | 1.97×10-7 |
f4 | 0.0083 | 0.1895 | 1.81×10-7 |
f5 | 0.0402 | 0.1448 | 3.34×10-8 |
1 | Song K, Wang Y M, Ding Y H, et al. Assembly techniques for proton exchange membrane fuel cell stack: a literature review[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111777. |
2 | Wu D, Li K, Gao Y, et al. Design and simulation of proton exchange membrane fuel cell system[J]. Energy Reports, 2021, 7: 522-530. |
3 | Yang D, Wang Y J, Chen Z H. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13508-13522. |
4 | Li X Y, Wang Y J, Yang D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin’s minimal principle[J]. Journal of Power Sources, 2019, 440: 227105. |
5 | Deng H W, Li Q, Cui Y L, et al. Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19357-19369. |
6 | Won J, Oh H, Hong J, et al. Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells[J]. Renewable Energy, 2021, 180: 343-352. |
7 | 陈维荣, 刘嘉蔚, 李奇, 等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报, 2017, 37(16): 4712-4721, 4896. |
Chen W R, Liu J W, Li Q, et al. Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721, 4896. | |
8 | Wang J B, Yang B, Zeng C Y, et al. Recent advances and summarization of fault diagnosis techniques for proton exchange membrane fuel cell systems: a critical overview[J]. Journal of Power Sources, 2021, 500: 229932. |
9 | Yuan H, Dai H F, Wei X Z, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: 228376. |
10 | Lee W Y, Oh H, Kim M, et al. Hierarchical fault diagnostic method for a polymer electrolyte fuel cell system[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25733-25746. |
11 | Olteanu S C, Aitouche A, Oueidat M, et al. Fuel cell diagnosis using Takagi-Sugeno observer approach[C]//2012 International Conference on Renewable Energies for Developing Countries (REDEC). Beirut, Lebanon: IEEE, 2012: 1-7. |
12 | Jeong H, Park B, Park S, et al. Fault detection and identification method using observer-based residuals[J]. Reliability Engineering & System Safety, 2019, 184: 27-40. |
13 | de Lira S, Puig V, Quevedo J, et al. LPV observer design for PEM fuel cell system: application to fault detection[J]. Journal of Power Sources, 2011, 196(9): 4298-4305. |
14 | Sinha V, Mondal S. Adaptive unknown input observer approach for multi-fault diagnosis of PEM fuel cell system with time-delays[J]. Journal of Control and Decision, 2021, 8(2): 222-232. |
15 | Lim I S, Park J Y, Choi E J, et al. Efficient fault diagnosis method of PEMFC thermal management system for various current densities[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2543-2554. |
16 | 蒋璐. 燃料电池水故障诊断方法研究[D]. 成都: 西南交通大学, 2019. |
Jiang L. Research on water fault diagnosis method for fuel cell[D]. Chengdu: Southwest Jiaotong University, 2019. | |
17 | 刘嘉蔚, 李奇, 陈维荣, 等. 基于概率神经网络和线性判别分析的PEMFC水管理故障诊断方法研究[J]. 中国电机工程学报, 2019, 39(12): 3614-3622. |
Liu J W, Li Q, Chen W R, et al. Research on PEMFC water management fault diagnosis method based on probabilistic neural network and linear discriminant analysis[J]. Proceedings of the CSEE, 2019, 39(12): 3614-3622. | |
18 | 王兴娣. 基于数据驱动的质子交换膜燃料电池电堆故障诊断研究[D]. 成都: 西南交通大学, 2018. |
Wang X D. Study on data-driven fault diagnosis for proton exchange membrane fuel cell stack[D]. Chengdu: Southwest Jiaotong University, 2018. | |
19 | Hua J F, Li J Q, Ouyang M G, et al. Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9896-9905. |
20 | Li Z L, Outbib R, Hissel D, et al. Online diagnosis of PEMFC by analyzing individual cell voltages[C]//2013 European Control Conference (ECC). Zurich, Switzerland: IEEE, 2013: 2439-2444. |
21 | Sethi A, Verstraete D. A comparative study of wavelet-based descriptors for fault diagnosis of self-humidified proton exchange membrane fuel cells[J]. Fuel Cells, 2020, 20(2): 131-142. |
22 | Zhou S, Jin J, Wei Y H. Research on online diagnosis method of fuel cell centrifugal air compressor surge fault[J]. Energies, 2021, 14(11): 3071. |
23 | Ibrahim M, Antoni U, Steiner N Y, et al. Signal-based diagnostics by wavelet transform for proton exchange membrane fuel cell[J]. Energy Procedia, 2015, 74: 1508-1516. |
24 | Liu J W, Li Q, Chen W R, et al. A discrete hidden Markov model fault diagnosis strategy based on K-means clustering dedicated to PEM fuel cell systems of tramways[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12428-12441. |
25 | Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Ann Arbor: University of Michigan, 2003. |
26 | 李飞, 赵冬冬, 皇甫宜耿, 等. 适用于PEMFC系统状态估计的鲁棒非线性观测器[J]. 电源学报, 2019, 17(2): 19-25. |
Li F, Zhao D D, Huangfu Y G, et al. Robust nonlinear observer for state estimation of PEMFC system[J]. Journal of Power Supply, 2019, 17(2): 19-25. | |
27 | 展茂胜. 质子交换膜燃料电池热管理系统的优化与控制[D]. 济南: 山东大学, 2020. |
Zhan M S. Optimization and control of thermal management system for PEMFC[D]. Jinan: Shandong University, 2020. | |
28 | Ding S. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[M]. Berlin Heidelberg: Springer, 2008. |
29 | Salim R, Noura H, Fardoun A. Fault diagnosis of a commercial PEM Fuel cell system using LMS AMESim[C]//2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). Sharjah, United Arab Emirates: IEEE, 2017: 1-6. |
30 | Aitouche A, Yang Q, Ould Bouamama B. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy[J]. The European Physical Journal Applied Physics, 2011, 54(2): 23408. |
31 | Schmid M, Gebauer E, Hanzl C, et al. Active model-based fault diagnosis in reconfigurable battery systems[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2584-2597. |
32 | Escobet T, Feroldi D, de Lira S, et al. Model-based fault diagnosis in PEM fuel cell systems[J]. Journal of Power Sources, 2009, 192(1): 216-223. |
33 | 党常会, 朱海潮, 章林柯, 等. 基于欧氏距离的基本信任函数确立方法[J]. 舰船科学技术, 2012, 34(8): 87-89, 94. |
Dang C H, Zhu H C, Zhang L K, et al. A method to establish mass function based on euclidean distance[J]. Ship Science and Technology, 2012, 34(8): 87-89, 94. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[4] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[5] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[6] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[7] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[8] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[9] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[10] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[11] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
[12] | XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections [J]. CIESC Journal, 2020, 71(12): 5655-5663. |
[13] | Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems [J]. CIESC Journal, 2020, 71(11): 5237-5245. |
[14] | Wei CHAI, Longhang GUO, Binbin CHI. Interval model for predicting effluent quality variables of wastewater treatment plants [J]. CIESC Journal, 2019, 70(9): 3449-3457. |
[15] | Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA [J]. CIESC Journal, 2019, 70(9): 3441-3448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||