CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 224-236.DOI: 10.11949/0438-1157.20221073
• Reviews and monographs • Previous Articles Next Articles
Junying YAN(), Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG(), Tongwen XU()
Received:
2022-08-01
Revised:
2022-10-26
Online:
2023-03-20
Published:
2023-01-05
Contact:
Yaoming WANG, Tongwen XU
闫军营(), 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明(), 徐铜文()
通讯作者:
汪耀明,徐铜文
作者简介:
闫军营(1997—),男,博士研究生,yjy0822@mail.ustc.edu.cn
基金资助:
CLC Number:
Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges[J]. CIESC Journal, 2023, 74(1): 224-236.
闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236.
Add to citation manager EndNote|Ris|BibTeX
项目 | ED | SED | NF | RO |
---|---|---|---|---|
主要用途 | 盐浓缩、脱盐 | 一/多价离子分离、浓缩 | 一/多价离子分离 | 有机物和微生物脱除、脱盐 |
驱动力 | 电势差 | 电势差 | 压力差 | 压力差 |
操作压力 | 低 | 低 | 高 | 高 |
膜污染 | 低 | 低 | 高 | 低 |
投资成本 | 较高 | 高 | 较低 | 高 |
优势 | 高倍率浓缩 | 分盐+一价盐高倍浓缩 | 分盐,技术成熟 | 离子去除率高,技术成熟 |
劣势 | 不能分盐 | 投资成本高 | 不能实现同时分盐和一价盐浓缩 | 抗污染能力差,水回收率低 |
Table 1 Comparison of typical membrane separation technology
项目 | ED | SED | NF | RO |
---|---|---|---|---|
主要用途 | 盐浓缩、脱盐 | 一/多价离子分离、浓缩 | 一/多价离子分离 | 有机物和微生物脱除、脱盐 |
驱动力 | 电势差 | 电势差 | 压力差 | 压力差 |
操作压力 | 低 | 低 | 高 | 高 |
膜污染 | 低 | 低 | 高 | 低 |
投资成本 | 较高 | 高 | 较低 | 高 |
优势 | 高倍率浓缩 | 分盐+一价盐高倍浓缩 | 分盐,技术成熟 | 离子去除率高,技术成熟 |
劣势 | 不能分盐 | 投资成本高 | 不能实现同时分盐和一价盐浓缩 | 抗污染能力差,水回收率低 |
膜类型 | 名称 | 电阻/ (Ω·cm2) | 破裂强度/ MPa | 厚度/mm | 离子交换容量/ (mmol·g-1) | 迁移数/% | 厂家 |
---|---|---|---|---|---|---|---|
一/二价阳离子交换膜 | CIMS | 1.8 | ≥0.1 | 0.15 | — | — | Astom, Japan |
CSO | 2.3 | — | 0.1 | 1.4~1.7 | >97 | AGC Engineering, Japan | |
PC-MVK | — | ≥0.3 | 0.1 | — | >97 | PCA GmbH, Germany | |
K-102 | 1.8~2.3 | — | 0.21~0.23 | 1.8~2.0 | >99 | Asahi Chemical, Japan | |
一/二价阴离子交换膜 | ACS | 3.8 | ≥0.25 | 0.13 | — | — | Astom, Japan |
ASV | 4.0 | ≥0.2 | 0.1 | 1.8~2.2 | >95 | AGC Engineering, Japan | |
PC-MVA | 20 | ≥0.2 | 0.11 | — | >97 | PCA GmbH, Germany | |
A-102 | 1.7~2.1 | — | 0.13~0.15 | 1.8~1.9 | >99 | Asahi Chemical, Japan |
Table 2 The properties of commercial mono/divalent ion exchange membranes
膜类型 | 名称 | 电阻/ (Ω·cm2) | 破裂强度/ MPa | 厚度/mm | 离子交换容量/ (mmol·g-1) | 迁移数/% | 厂家 |
---|---|---|---|---|---|---|---|
一/二价阳离子交换膜 | CIMS | 1.8 | ≥0.1 | 0.15 | — | — | Astom, Japan |
CSO | 2.3 | — | 0.1 | 1.4~1.7 | >97 | AGC Engineering, Japan | |
PC-MVK | — | ≥0.3 | 0.1 | — | >97 | PCA GmbH, Germany | |
K-102 | 1.8~2.3 | — | 0.21~0.23 | 1.8~2.0 | >99 | Asahi Chemical, Japan | |
一/二价阴离子交换膜 | ACS | 3.8 | ≥0.25 | 0.13 | — | — | Astom, Japan |
ASV | 4.0 | ≥0.2 | 0.1 | 1.8~2.2 | >95 | AGC Engineering, Japan | |
PC-MVA | 20 | ≥0.2 | 0.11 | — | >97 | PCA GmbH, Germany | |
A-102 | 1.7~2.1 | — | 0.13~0.15 | 1.8~1.9 | >99 | Asahi Chemical, Japan |
膜类型 | 自制膜 | 分离体系 | 电流密度/ (mA·cm-2) | 商业膜 | 选择性 (自制膜/商业膜) | 通量/ (mmol·(m2·s)-1) | 文献 |
---|---|---|---|---|---|---|---|
一/多价阳离子交换膜 | SCEM | 0.02 mol·L-1 Na+/Mg2+ | 5 | CIMS | 1.64/1.51 | [ | |
PANi | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 4.1/3.56 | [ | ||
PPy | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 12.95/2.46 | [ | ||
ICM | 0.1 mol·L-1 K+/Mg2+ | 20 | CIMS | 7.91/— | [ | ||
EDNF | 0.46/0.052 mol·L-1 Na+/Mg2+ | 20 | CSO | 7.0/4.0 | [ | ||
ENF | 0.1 mol·L-1 Li+/Mg2+ | 10 | CSO | 11.3/1.62 | [ | ||
NQS | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 1.6/1.55 | [ | ||
MCPM | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 3.3/1.7 | [ | ||
MCMX | 0.1 mol·L-1 Na+/Mg2+ | 5 | CIMS | 35.13/— | [ | ||
PDA-mil | 0.34/0.021 mol·L-1 Na+/Mg2+ | 恒压-20 V | — | 3.3/— | [ | ||
Modified SPPO | 0.46/0.052 mol·L-1Na+/Mg2+ | 20 | CSO | 15.5/2.58 | [ | ||
一/多价阴离子交换膜 | MAEM | 0.1 mol·L-1 Cl-/SO | 20 | ACS | 52.44/— | [ | |
PAES | 0.05 mol·L-1 Cl-/SO | 5 | ACS | 12.5/5.27 | [ | ||
S-rGO | 0.05 mol·L-1 Cl-/SO | 5 | — | 2.25/— | — | [ |
Table3 The properties of domestic mono/divalent ion exchange membranes
膜类型 | 自制膜 | 分离体系 | 电流密度/ (mA·cm-2) | 商业膜 | 选择性 (自制膜/商业膜) | 通量/ (mmol·(m2·s)-1) | 文献 |
---|---|---|---|---|---|---|---|
一/多价阳离子交换膜 | SCEM | 0.02 mol·L-1 Na+/Mg2+ | 5 | CIMS | 1.64/1.51 | [ | |
PANi | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 4.1/3.56 | [ | ||
PPy | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 12.95/2.46 | [ | ||
ICM | 0.1 mol·L-1 K+/Mg2+ | 20 | CIMS | 7.91/— | [ | ||
EDNF | 0.46/0.052 mol·L-1 Na+/Mg2+ | 20 | CSO | 7.0/4.0 | [ | ||
ENF | 0.1 mol·L-1 Li+/Mg2+ | 10 | CSO | 11.3/1.62 | [ | ||
NQS | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 1.6/1.55 | [ | ||
MCPM | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 3.3/1.7 | [ | ||
MCMX | 0.1 mol·L-1 Na+/Mg2+ | 5 | CIMS | 35.13/— | [ | ||
PDA-mil | 0.34/0.021 mol·L-1 Na+/Mg2+ | 恒压-20 V | — | 3.3/— | [ | ||
Modified SPPO | 0.46/0.052 mol·L-1Na+/Mg2+ | 20 | CSO | 15.5/2.58 | [ | ||
一/多价阴离子交换膜 | MAEM | 0.1 mol·L-1 Cl-/SO | 20 | ACS | 52.44/— | [ | |
PAES | 0.05 mol·L-1 Cl-/SO | 5 | ACS | 12.5/5.27 | [ | ||
S-rGO | 0.05 mol·L-1 Cl-/SO | 5 | — | 2.25/— | — | [ |
1 | Kim N, Su X, Kim C. Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction[J]. Chemical Engineering Journal, 2021, 420: 127715. |
2 | 董婷. 电流密度与离子浓度影响下电渗析中选择性分离单价/二价阳离子的过程解析与优化[D]. 重庆: 重庆大学, 2021. |
Dong T. Process analysis and optimization of selective separation of mon-/di-valent cations in electrodialysis under the influence of current density and ion concentration[D]. Chongqing: Chongqing University, 2021. | |
3 | Sadrzadeh M, Mohammadi T. Sea water desalination using electrodialysis[J]. Desalination, 2008, 221(1/2/3): 440-447. |
4 | Xu T W, Huang C H. Electrodialysis-based separation technologies: a critical review[J]. AIChE Journal, 2008, 54(12): 3147-3159. |
5 | Huang C H, Xu T W, Zhang Y P, et al. Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments[J]. Journal of Membrane Science, 2007, 288(1/2): 1-12. |
6 | Zhang Y, Paepen S, Pinoy L, et al. Selectrodialysis: fractionation of divalent ions from monovalent ions in a novel electrodialysis stack[J]. Separation and Purification Technology, 2012, 88: 191-201. |
7 | Xu T T, Wu B, Hou L X, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J]. Journal of the American Chemical Society, 2022, 144(23): 10220-10229. |
8 | Sheng F M, Wu B, Li X Y, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J]. Advanced Materials, 2021, 33(44): e2104404. |
9 | Sata T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—effect of hydrophilicity of anion exchange membranes on permselectivity of anions[J]. Journal of Membrane Science, 2000, 167(1): 1-31. |
10 | Sata T, Sata T, Yang W. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis[J]. Journal of Membrane Science, 2002, 206(1/2): 31-60. |
11 | Besha A T, Tsehaye M T, Aili D, et al. Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis[J]. Membranes, 2019, 10(1): 7. |
12 | Ge L, Wu L, Wu B, et al. Preparation of monovalent cation selective membranes through annealing treatment[J]. Journal of Membrane Science, 2014, 459: 217-222. |
13 | Galama A H, Daubaras G, Burheim O S, et al. Fractioning electrodialysis: a current induced ion exchange process[J]. Electrochimica Acta, 2014, 136: 257-265. |
14 | White N, Bruening M, Mmisovich M. Highly selective cation separations in electrodialysis through cation-exchange membranes coated with polyelectrolyte multilayers[J]. Abstracts of Papers of the American Chemical Society, 2015, 249. |
15 | White N, Misovich M, Alemayehu E, et al. Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers[J]. Polymer, 2016, 103: 478-485. |
16 | Cheng C, White N, Shi H, et al. Cation separations in electrodialysis through membranes coated with polyelectrolyte multilayers[J]. Polymer, 2014, 55(6): 1397-1403. |
17 | Vaselbehagh M, Karkhanechi H, Takagi R, et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis—experimental verification of theoretical predictions[J]. Journal of Membrane Science, 2015, 490: 301-310. |
18 | Zhao Y, Zhu J J, Ding J C, et al. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity[J]. Journal of Membrane Science, 2018, 548: 81-90. |
19 | Jiang W B, Lin L, Xu X S, et al. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis[J]. Journal of Membrane Science, 2019, 572: 545-556. |
20 | Pan J F, Ding J C, Tan R Q, et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine[J]. Journal of Membrane Science, 2017, 539: 263-272. |
21 | Amara M, Kerdjoudj H. Modification of cation-exchange membrane properties by electro-adsorption of polyethyleneimine[J]. Desalination, 2003, 155(1): 79-87. |
22 | Ying J D, Lin Y Q, Zhang Y R, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J]. Chemical Engineering Journal, 2022, 446: 137076. |
23 | Farrokhzad H, Darvishmanesh S, Genduso G, et al. Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline[J]. Electrochimica Acta, 2015, 158: 64-72. |
24 | Gohil G S, Binsu V V, Shahi V K. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 210-218. |
25 | Tufa R A, Piallat T, Hnát J, et al. Salinity gradient power reverse electrodialysis: cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity[J]. Chemical Engineering Journal, 2020, 380: 122461. |
26 | Farrokhzad H, Moghbeli M R, Gerven T V, et al. Surface modification of composite ion exchange membranes by polyaniline[J]. Reactive and Functional Polymers, 2015, 86: 161-167. |
27 | Sivaraman P, Chavan J G, Thakur A P, et al. Electrochemical modification of cation exchange membrane with polyaniline for improvement in permselectivity[J]. Electrochimica Acta, 2007, 52(15): 5046-5052. |
28 | Hou L X, Wu B, Yu D B, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation[J]. Journal of Membrane Science, 2018, 557: 49-57. |
29 | Liao J B, Yu X Y, Pan N X, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications[J]. Journal of Membrane Science, 2019, 577: 153-164. |
30 | Zhao Y, Tang K N, Ruan H M, et al. Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane[J]. Journal of Membrane Science, 2017, 536: 167-175. |
31 | Wang W G, Liu R, Tan M, et al. Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes[J]. Journal of Membrane Science, 2019, 582: 236-245. |
32 | Pang X, Tao Y Y, Xu Y Q, et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers[J]. Journal of Membrane Science, 2020, 595: 117544. |
33 | Pang X, Yu X H, He Y B, et al. Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier[J]. Separation and Purification Technology, 2021, 270: 118768. |
34 | Zhang Y R, Lin Y Q, Ying J D, et al. Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels[J]. AIChE Journal, 2022, 68(11): e17825. |
35 | Ge L, Wu B, Li Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498: 192-200. |
36 | Sheng F M, Hou L X, Wang X X, et al. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation[J]. Journal of Membrane Science, 2020, 594: 117453. |
37 | Hou L X, Pan J F, Yu D B, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation[J]. Journal of Membrane Science, 2017, 528: 243-250. |
38 | Zhang D Y, Jiang C X, Li Y Y, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36626-36637. |
39 | Li J, Zhu J Y, Yuan S S, et al. Mussel-inspired monovalent selective cation exchange membranes containing hydrophilic MIL53(Al) framework for enhanced ion flux[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6275-6283. |
40 | Shehzad M A, Wang Y M, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie International Edition, 2019, 58(36): 12646-12654. |
41 | Jiang C X, Zhang D Y, Muhammad A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
42 | Zhang W, Miao M J, Pan J F, et al. Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination, 2017, 411: 28-37. |
43 | Galama A H, Daubaras G, Burheim O S, et al. Seawater electrodialysis with preferential removal of divalent ions[J]. Journal of Membrane Science, 2014, 452: 219-228. |
44 | Tran A T K, Zhang Y, Lin J Y, et al. Phosphate pre-concentration from municipal wastewater by selectrodialysis: effect of competing components[J]. Separation and Purification Technology, 2015, 141: 38-47. |
45 | Tran A T K, Zhang Y, de Corte D, et al. P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process[J]. Journal of Cleaner Production, 2014, 77: 140-151. |
46 | Zhang Y, Desmidt E, van Looveren A, et al. Phosphate separation and recovery from wastewater by novel electrodialysis[J]. Environmental Science & Technology, 2013, 47(11): 5888-5895. |
47 | Ahdab Y D, Rehman D, Lienhard J H V. Brackish water desalination for greenhouses: improving groundwater quality for irrigation using monovalent selective electrodialysis reversal[J]. Journal of Membrane Science, 2020, 610: 118072. |
48 | Zhang X C, Wang J, Ji Z Y, et al. Preparation of Li2CO3 from high Mg2+/Li+ brines based on selective-electrodialysis with feed and bleed mode[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106635. |
49 | Yan J Y, Wang H Y, Fu R, et al. Ion exchange membranes for acid recovery: diffusion dialysis (DD) or selective electrodialysis (SED)? [J]. Desalination, 2022, 531: 115690. |
50 | Hussain A, Yan H Y, Ul Afsar N, et al. Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration[J]. Separation and Purification Technology, 2022, 295: 121318. |
51 | Reig M, Vecino X, Valderrama C, et al. Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn[J]. Separation and Purification Technology, 2018, 195: 404-412. |
52 | Nie X Y, Sun S Y, Song X F, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
53 | Cohen B, Lazarovitch N, Gilron J. Upgrading groundwater for irrigation using monovalent selective electrodialysis[J]. Desalination, 2018, 431: 126-139. |
54 | Qiu Y B, Yao L, Tang C, et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019, 465: 1-12. |
55 | Campione A, Gurreri L, Ciofalo M, et al. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
56 | 张维润, 樊雄. 电渗析浓缩海水制盐[J]. 水处理技术, 2009, 35(2): 1-4. |
Zhang W R, Fan X. Salt making from sea water by electrodialysis concentration[J]. Technology of Water Treatment, 2009, 35(2): 1-4. | |
57 | van der Bruggen B V, Koninckx A, Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration[J]. Water Research, 2004, 38(5): 1347-1353. |
58 | Yan J Y, Yan H Y, Wang H Y, et al. Bipolar membrane electrodialysis for clean production of L‐10 camphorsulfonic acid: from laboratory to industrialization[J]. AlChE Journal, 2021, 68(2). |
59 | Wang Y M, Wang X L, Yan H Y, et al. Bipolar membrane electrodialysis for cleaner production of N-methylated glycine derivative amino acids[J]. AIChE Journal, 2020, 66(11). |
60 | Xu T W, Yang W H. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis[J]. Journal of Membrane Science, 2002, 203(1/2): 145-153. |
61 | Reig M, Valderrama C, Gibert O, et al. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: monovalent-divalent ions separation and acid and base production[J]. Desalination, 2016, 399: 88-95. |
62 | Brover S, Lester Y, Brenner A, et al. Optimization of ultrafiltration as pre-treatment for seawater RO desalination[J]. Desalination, 2022, 524: 115478. |
63 | Park D J, Supekar O D, Greenberg A R, et al. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy[J]. Desalination, 2021, 497: 114736. |
64 | Shakib S E, Amidpour M, Boghrati M, et al. New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle[J]. Journal of Cleaner Production, 2021, 295: 126402. |
65 | He L, Jiang A P, Huang Q Y, et al. Modeling and structural optimization of MSF-RO desalination system[J]. Membranes, 2022, 12(6): 545. |
66 | Persico M, Mikhaylin S, Doyen A, et al. Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions[J]. Journal of Membrane Science, 2017, 543: 212-221. |
67 | Hashaikeh R, Lalia B S, Kochkodan V, et al. A novel in situ membrane cleaning method using periodic electrolysis[J]. Journal of Membrane Science, 2014, 471: 149-154. |
68 | Liu R D, Wang Y K, Wu G, et al. Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment[J]. Chemical Engineering Journal, 2017, 322: 224-233. |
69 | Ye Z L, Ghyselbrecht K, Monballiu A, et al. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis[J]. Water Research, 2019, 160: 424-434. |
70 | Gueccia R, Aguirre A R, Randazzo S, et al. Diffusion dialysis for separation of hydrochloric acid, iron and zinc ions from highly concentrated pickling solutions[J]. Membranes, 2020, 10(6): 129. |
71 | Gueccia R, Randazzo S, Martino D C, et al. Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution[J]. Journal of Environmental Management, 2019, 235: 202-212. |
72 | Yan H Y, Xu C Y, Wu Y H, et al. Integrating diffusion dialysis with membrane electrolysis for recovering sodium hydroxide from alkaline sodium metavanadate solution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5382-5393. |
73 | Zhuang J X, Chen Q, Wang S, et al. Zero discharge process for foil industry waste acid reclamation: coupling of diffusion dialysis and electrodialysis with bipolar membranes[J]. Journal of Membrane Science, 2013, 432: 90-96. |
74 | Zhang X, Li C R, Wang X L, et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: an integration of diffusion dialysis and conventional electrodialysis[J]. Journal of Membrane Science, 2012, 409/410: 257-263. |
75 | Li W, Zhang Y M, Huang J, et al. Separation and recovery of sulfuric acid from acidic vanadium leaching solution by diffusion dialysis[J]. Separation and Purification Technology, 2012, 96: 44-49. |
76 | Zhang X, Li C R, Wang H C, et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foil wastewater by spiral wound diffusion dialysis (SWDD) membrane module[J]. Journal of Membrane Science, 2011, 384(1/2): 219-225. |
77 | Luo J Y, Wu C M, Xu T W, et al. Diffusion dialysis—concept, principle and applications[J]. Journal of Membrane Science, 2011, 366(1/2): 1-16. |
78 | Luo J Y, Wu C M, Wu Y H, et al. Diffusion dialysis processes of inorganic acids and their salts: the permeability of different acidic anions[J]. Separation and Purification Technology, 2011, 78(1): 97-102. |
79 | Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 832-837. |
80 | Palatý Z, Žáková A. Separation of HCl+NiCl2 mixture by diffusion dialysis[J]. Separation Science and Technology, 2007, 42(9): 1965-1983. |
81 | Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
82 | Ledingham J, Sedransk C K L, In’t Veen B, et al. Barriers to electrodialysis implementation: maldistribution and its impact on resistance and limiting current density[J]. Desalination, 2022, 531: 115691. |
83 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
84 | Wen X M, Ma P H, Zhu C L, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3): 230-236. |
85 | 黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350. |
Huang Q B, Liu G P, Jin W Q. Recent progress of membrane materials for mono-/ di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[11] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[12] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||