CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 276-289.DOI: 10.11949/0438-1157.20221574
• Reviews and monographs • Previous Articles Next Articles
Hao ZHANG1(), Ziyue WANG1, Yujie CHENG1, Xiaohui HE1,3(), Hongbing JI1,2,3,4()
Received:
2022-12-07
Revised:
2023-01-11
Online:
2023-03-20
Published:
2023-01-05
Contact:
Xiaohui HE, Hongbing JI
张浩1(), 王子悦1, 程钰洁1, 何晓辉1,3(), 纪红兵1,2,3,4()
通讯作者:
何晓辉,纪红兵
作者简介:
张浩(1995—),男,博士研究生,zhangh577@mail2.sysu.edu.cn
基金资助:
CLC Number:
Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts[J]. CIESC Journal, 2023, 74(1): 276-289.
张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Synthesis diagram of the synthesis of Sn δ+ single-atom catalyst (a); TEM image of Sn δ+ single-atom catalyst (b); AC HAADF-STEM image of Sn δ+ single-atom catalyst (c); FT-EXAFS spectra of Sn δ+ single-atom catalyst (d) [44]
Fig.2 Schematic diagram of the ligand-mediated strategy for the synthesis of single-atom catalysts (a); AC HAADF-STEM images of different Ni single-atom catalysts with 2.5% (b), 3.4% (c), 4.5% (d), and 5.3% (e) Ni loding; Photograph of a large-scale 2.5% metal-loaded Ni single-atom catalyst (f) [47]; Strategy for the preparation of UHD-SACs (g)[47-48]
Fig.3 Schematic diagram of the synthesis of Pd1/ZnO (a); AC HAADF-STEM images of different scales of Pd1/ZnO (b); FT-EXAFS spectra of Pd1/ZnO-10 and Pd1/ZnO-1000 (c); Pictures of different scales of single-atom catalysts (d) [53]
Fig.4 Schematic diagram of the synthesis of Pt1/Co (a); AC HAADF-STEM images of Pt1/Co and Pt1/Co-1000 [(b),(c)]; AC HAADF-STEM images of different scales of single-atom catalysts (d); AC HAADF-STEM images of different types of single-atom catalysts (e) [55-57]
Fig.5 Schematic diagram of the synthesis of kilogram-scale Ru single-atom catalysts (a); STEM image of Ru1/MAFO (b); AC HAADF-STEM images of Ru1/MAFO[ (c), (d)] [59]
Fig.7 Schematic diagram of the experimental setup and formation mechanism of the gas migration strategy (a); AC HAADF-STEM image of Cu1/N-C [(b), (c)]; FT-EXAFS spectra of Cu1/N-C (d) [67]
Fig.8 Schematic diagram for the quasi-continuous synthesis of Fe/SNC (a); Scanning electron microscopy image of microcapsules (b); AC AC HAADF-STEM image of Fe/SNC (c), Co/SNC (d), and Ni/SNC (e) [68]
Fig.9 Experimental plot of the preparation of Pd1/FeO x (a); Single-atom catalyst synthesis production line (b); AC HAADF-STEM image of Pd1/FeO x from different synthesis batches [(c)-(f)]; FT-EXAFS spectra of Pd1/FeO x -1 and Pd1/FeO x -4 (g)[70]
Fig.10 Scheme for the continuous synthesis of Pd1/TiO2 (a); STEM-EDS elemental mapping of a single Pd1/TiO2 nanosheet (b); AC HAADF-STEM image of Pd1/TiO2 (c) [2]
Fig.11 Schematic of the continuous synthesis of catalysts (a); Histogram of particle size distribution of catalysts (b); AC HAADF-STEM image of Rh single-atom catalyst (c)[71]
1 | Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212. |
2 | Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287): 797-801. |
3 | Pei G X, Liu X Y, Chai M Q, et al. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: effects of Cu loading[J]. Chinese Journal of Catalysis, 2017, 38(9): 1540-1548. |
4 | Lin L L, Yao S Y, Gao R, et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation[J]. Nature Nanotechnology, 2019, 14(4): 354-361. |
5 | Huang F, Deng Y C, Chen Y L, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene[J]. Journal of the American Chemical Society, 2018, 140(41): 13142-13146. |
6 | Zhang Z L, Zhu Y H, Asakura H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation[J]. Nature Communications, 2017, 8: 16100. |
7 | Wei H S, Liu X Y, Wang A Q, et al. FeO x -supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications, 2014, 5: 5634. |
8 | Nie L, Mei D H, Xiong H F, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation[J]. Science, 2017, 358(6369): 1419-1423. |
9 | Liu W G, Zhang L L, Liu X, et al. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C—H bond[J]. Journal of the American Chemical Society, 2017, 139(31): 10790-10798. |
10 | Cao L N, Liu W, Luo Q Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2 [J]. Nature, 2019, 565(7741): 631-635. |
11 | Sun Q D, Wang X Y, Wang H, et al. Crystal facet effects of platinum single-atom catalysts in hydrolytic dehydrogenation of ammonia borane[J]. Journal of Materials Chemistry A, 2022, 10(20): 10837-10843. |
12 | Lin L L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
13 | Chen L N, Hou K P, Liu Y S, et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst[J]. Journal of the American Chemical Society, 2019, 141(45): 17995-17999. |
14 | Guo X G, Fang G Z, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619. |
15 | Chen Z P, Vorobyeva E, Mitchell S, et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling[J]. Nature Nanotechnology, 2018, 13(8): 702-707. |
16 | Cao S F, Yang M, Elnabawy A O, et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions[J]. Nature Chemistry, 2019, 11(12): 1098-1105. |
17 | Gu J, Hsu C S, Bai L C, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094. |
18 | Zhao C M, Dai X Y, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2 [J]. Journal of the American Chemical Society, 2017, 139(24): 8078-8081. |
19 | Yang H B, Hung S F, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147. |
20 | Jung E, Shin H, Lee B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4): 436-442. |
21 | Tang J L, Xu S H, Sun K, et al. Recycling synthesis of single-atom Zn-nitrogen-carbon catalyst for electrocatalytic reduction of O2 to H2O2 [J]. Science China Materials, 2022, 65(12): 3490-3496. |
22 | Wang X N, Xu H X, Luo Y B, et al. High selective direct synthesis of H2O2 over Pd1 @γ-Al2O3 single-atom catalyst[J]. ChemCatChem, 2022, 14(21): e202200853. |
23 | Wu Y H, Ma H, Feng Y R, et al. Harnessing optimized surface reconstruction of single-atom Ni-doped Ni-NiO/NC precatalysts toward robust H2O2 production[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26803-26813. |
24 | Xiong Y, Dong J C, Huang Z Q, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation[J]. Nature Nanotechnology, 2020, 15(5): 390-397. |
25 | Zhou H, Wu Y E. Formic acid oxidation by iridium single-atom catalysts on nitrogen-doped carbon[J]. Science China Chemistry, 2020, 63(9): 1171-1172. |
26 | Han A L, Zhang Z D, Yang J R, et al. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions[J]. Small, 2021, 17(16): e2004500. |
27 | Li M F, Duanmu K N, Wan C Z, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature Catalysis, 2019, 2(6): 495-503. |
28 | Lu Z Y, Wang B, Hu Y F, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie International Edition, 2019, 58(9): 2622-2626. |
29 | Liu D B, Li X Y, Chen S M, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4(6): 512-518. |
30 | Ye S H, Luo F Y, Zhang Q L, et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction[J]. Energy & Environmental Science, 2019, 12(3): 1000-1007. |
31 | Cui X J, Li W, Ryabchuk P, et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts[J]. Nature Catalysis, 2018, 1(6): 385-397. |
32 | Chen Y J, Ji S F, Chen C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. |
33 | Cao S F, Zhao Y Y, Lee S, et al. High-loading single Pt atom sites[Pt-O(OH) x ] catalyze the CO PROX reaction with high activity and selectivity at mild conditions[J]. Science Advances, 2020, 6(25): eaba3809. |
34 | Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
35 | Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeO x [J]. Nature Chemistry, 2011, 3(8): 634-641. |
36 | Vajda S, White M G. Catalysis applications of size-selected cluster deposition[J]. ACS Catalysis, 2015, 5(12): 7152-7176. |
37 | Zhao L, Zhang Y, Huang L B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nature Communications, 2019, 10: 1278. |
38 | Fan L L, Liu P F, Yan X C, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis[J]. Nature Communications, 2016, 7: 10667. |
39 | Yao S Y, Zhang X, Zhou W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349): 389-393. |
40 | Wu M F, Wang H, Zhong L S, et al. Effects of acid pretreatment on Fe-ZSM-5 and Fe-beta catalysts for N2O decomposition[J]. Chinese Journal of Catalysis, 2016, 37(6): 898-907. |
41 | Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nature Communications, 2017, 8: 1070. |
42 | Zhang L, Banis M N, Sun X L. Single-atom catalysts by the atomic layer deposition technique[J]. National Science Review, 2018, 5(5): 628-630. |
43 | Sun S H, Zhang G X, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3: 1775. |
44 | Zu X L, Li X D, Liu W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn δ + sites[J]. Advanced Materials, 2019, 31(15): e1808135. |
45 | Wen N, Xia Y G, Wang H H, et al. Large-scale synthesis of spinel Ni x Mn3- x O4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis[J]. Advanced Science, 2022, 9(16): 2200529. |
46 | Lyu F C, Zeng S S, Jia Z, et al. Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution[J]. Nature Communications, 2022, 13: 6249. |
47 | Yang H Z, Shang L, Zhang Q H, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts[J]. Nature Communications, 2019, 10: 4585. |
48 | Hai X, Xi S B, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nature Nanotechnology, 2022, 17(2): 174-181. |
49 | James S L, Adams C J, Bolm C, et al. Mechanochemistry: opportunities for new and cleaner synthesis[J]. Chemical Society Reviews, 2012, 41(1): 413-447. |
50 | Baláž P, Achimovičová M, Baláž M, et al. Hallmarks of mechanochemistry: from nanoparticles to technology[J]. Chemical Society Reviews, 2013, 42(18): 7571-7637. |
51 | Deng D H, Chen X Q, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11): e1500462. |
52 | Cui X J, Li H B, Wang Y, et al. Room-temperature methane conversion by graphene-confined single iron atoms[J]. Chem, 2018, 4(8): 1902-1910. |
53 | He X H, Deng Y C, Zhang Y, et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Reports Physical Science, 2020, 1(1): 100004. |
54 | Guo Y L, Huang Y K, Zeng B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst[J]. Nature Communications, 2022, 13: 2648. |
55 | Gan T, Liu Y F, He Q, et al. Facile synthesis of kilogram-scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8692-8699. |
56 | Gan T, He Q, Zhang H, et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen[J]. Chemical Engineering Journal, 2020, 389: 124490. |
57 | Zhang H, Zhang X C, Shi S L, et al. Highly efficient fabrication of kilogram-scale palladium single-atom catalysts for the suzuki-miyaura cross-coupling reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53755-53760. |
58 | Han G F, Li F, Rykov A I, et al. Abrading bulk metal into single atoms[J]. Nature Nanotechnology, 2022, 17(4): 403-407. |
59 | Liu K P, Zhao X T, Ren G Q, et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts[J]. Nature Communications, 2020, 11: 1263. |
60 | Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. |
61 | Wei S J, Li A, Liu J C, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9): 856-861. |
62 | Qu Y T, Li Z J, Chen W X, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nature Catalysis, 2018, 1(10): 781-786. |
63 | Qu Y T, Chen B X, Li Z J, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal[J]. Journal of the American Chemical Society, 2019, 141(11): 4505-4509. |
64 | Zhou P, Li N, Chao Y G, et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature[J]. Angewandte Chemie International Edition, 2019, 58(40): 14184-14188. |
65 | Qiao B T, Liang J X, Wang A Q, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)[J]. Nano Research, 2015, 8(9): 2913-2924. |
66 | Yang J, Qiu Z Y, Zhao C M, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie International Edition, 2018, 57(43): 14095-14100. |
67 | Yang Z K, Chen B X, Chen W X, et al. Directly transforming copper (Ⅰ) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach[J]. Nature Communications, 2019, 10: 3734. |
68 | Huang L Y, Wu K, He Q, et al. Quasi-continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy[J]. AIChE Journal, 2021, 67(6): e17197. |
69 | Huang L Y, Zhang H, Cheng Y J, et al. Quasi-continuous synthesis of cobalt single atom catalysts for transfer hydrogenation of quinoline[J]. Chinese Chemical Letters, 2022, 33(5): 2569-2572. |
70 | He X H, Zhang H, Zhang X C, et al. Building up libraries and production line for single atom catalysts with precursor-atomization strategy[J]. Nature Communications, 2022, 13: 5721. |
71 | Xue Q Q, Yan B H, Wang Y J, et al. Continuous synthesis of atomically dispersed Rh supported on MgAl2O4 using two-stage microreactor[J]. AIChE Journal, 2022, 68(11): e17841. |
72 | Yan B, Song H L, Yang G W. A facile and green large-scale fabrication of single atom catalysts for high photocatalytic H2 evolution activity[J]. Chemical Engineering Journal, 2022, 427: 131795. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[12] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||