CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1113-1125.DOI: 10.11949/0438-1157.20221347
• Separation engineering • Previous Articles Next Articles
Siqi WANG1(), Tianyu GU1, Xianfu CHEN1, Tong WANG2, Jia LI2, Wei KE2, Xiaofeng LI3, Yiqun FAN1()
Received:
2022-10-12
Revised:
2023-01-26
Online:
2023-04-19
Published:
2023-03-05
Contact:
Yiqun FAN
王思琪1(), 顾天宇1, 陈献富1, 王通2, 李佳2, 柯威2, 李小锋3, 范益群1()
通讯作者:
范益群
作者简介:
王思琪(1998—),女,硕士研究生,wsq1365180706@163.com
基金资助:
CLC Number:
Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract[J]. CIESC Journal, 2023, 74(3): 1113-1125.
王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125.
Add to citation manager EndNote|Ris|BibTeX
仪器 | 型号 | 生产厂家 |
---|---|---|
紫外可见光分光光度计 | UV-2600i | 岛津仪器(苏州)有限公司 |
液相色谱仪 | LC-20AT | 日本岛津公司 |
浊度计 | WZS-188 | 上海仪电科学仪器股份 有限公司 |
凝胶色谱仪 | Waters1515 | Waters(美国) |
冷场发射扫描电镜 | S-4800 | Hitachi(日本) |
Zeta电位分析仪 | Nano-ZS90 | Malvern(英国) |
白光干涉仪 | VK-X1000 | Keyence(日本) |
Table 1 Experimental materials and instruments
仪器 | 型号 | 生产厂家 |
---|---|---|
紫外可见光分光光度计 | UV-2600i | 岛津仪器(苏州)有限公司 |
液相色谱仪 | LC-20AT | 日本岛津公司 |
浊度计 | WZS-188 | 上海仪电科学仪器股份 有限公司 |
凝胶色谱仪 | Waters1515 | Waters(美国) |
冷场发射扫描电镜 | S-4800 | Hitachi(日本) |
Zeta电位分析仪 | Nano-ZS90 | Malvern(英国) |
白光干涉仪 | VK-X1000 | Keyence(日本) |
污染模型 | n | 方程 |
---|---|---|
完全孔阻塞 | 2 | |
标准孔阻塞 | 1.5 | |
中间孔阻塞 | 1 | |
滤饼层阻塞 | 0 |
Table 2 Pore blocking model equations
污染模型 | n | 方程 |
---|---|---|
完全孔阻塞 | 2 | |
标准孔阻塞 | 1.5 | |
中间孔阻塞 | 1 | |
滤饼层阻塞 | 0 |
Fouling model | 0.10 MPa | 0.20 MPa | 0.25 MPa | 0.30 MPa | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9586 | 7.280×10-2 | 0.9827 | 3.280×10-1 | 0.9630 | 3.546×10-1 | 0.9989 | 4.784×10-1 |
standard blocking | 0.9645 | 6.167×10-3 | 0.5289 | 8.237×10-3 | 0.6802 | 1.067×10-3 | 0.6641 | 1.353×10-2 |
intermediate blocking | 0.9963 | 9.040×10-4 | 0.9934 | 2.969×10-3 | 0.9766 | 2.991×10-3 | 0.9994 | 5.135×10-3 |
cake layer | 0.8892 | 1.203×10-5 | 0.8770 | 2.512×10-5 | 0.9258 | 1.524×10-5 | 0.4676 | 4.495×10-5 |
Table 3 Correlation coefficient R2 and pollution index k of pollution model at different operating pressure
Fouling model | 0.10 MPa | 0.20 MPa | 0.25 MPa | 0.30 MPa | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9586 | 7.280×10-2 | 0.9827 | 3.280×10-1 | 0.9630 | 3.546×10-1 | 0.9989 | 4.784×10-1 |
standard blocking | 0.9645 | 6.167×10-3 | 0.5289 | 8.237×10-3 | 0.6802 | 1.067×10-3 | 0.6641 | 1.353×10-2 |
intermediate blocking | 0.9963 | 9.040×10-4 | 0.9934 | 2.969×10-3 | 0.9766 | 2.991×10-3 | 0.9994 | 5.135×10-3 |
cake layer | 0.8892 | 1.203×10-5 | 0.8770 | 2.512×10-5 | 0.9258 | 1.524×10-5 | 0.4676 | 4.495×10-5 |
Fouling models | 2 m·s-1 | 3 m·s-1 | 4 m·s-1 | 5 m·s-1 | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9480 | 2.016×10-1 | 0.9827 | 3.280×10-1 | 0.9621 | 3.816×10-2 | 0.8065 | 9.167×10-2 |
standard blocking | 0.8646 | 1.215×10-2 | 0.5289 | 8.237×10-3 | 0.9754 | 2.416×10-3 | 0.5496 | 2.643×10-3 |
intermediate blocking | 0.9875 | 2.990×10-3 | 0.9934 | 2.969×10-3 | 0.9603 | 2.947×10-4 | 0.9052 | 5.706×10-4 |
cake layer | 0.9528 | 2.370×10-5 | 0.8770 | 2.012×10-5 | 0.9628 | 1.767×10-6 | 0.9747 | 3.427×10-6 |
Table 4 Correlation coefficient R2 and pollution index k of pollution model at different membrane surface velocities
Fouling models | 2 m·s-1 | 3 m·s-1 | 4 m·s-1 | 5 m·s-1 | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9480 | 2.016×10-1 | 0.9827 | 3.280×10-1 | 0.9621 | 3.816×10-2 | 0.8065 | 9.167×10-2 |
standard blocking | 0.8646 | 1.215×10-2 | 0.5289 | 8.237×10-3 | 0.9754 | 2.416×10-3 | 0.5496 | 2.643×10-3 |
intermediate blocking | 0.9875 | 2.990×10-3 | 0.9934 | 2.969×10-3 | 0.9603 | 2.947×10-4 | 0.9052 | 5.706×10-4 |
cake layer | 0.9528 | 2.370×10-5 | 0.8770 | 2.012×10-5 | 0.9628 | 1.767×10-6 | 0.9747 | 3.427×10-6 |
Fouling models | 20˚C | 30˚C | 40˚C | 50˚C | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9401 | 2.629×10-1 | 0.9827 | 3.280×10-1 | 0.9005 | 6.547×10-2 | 0.7565 | 5.062×10-2 |
standard blocking | 0.6005 | 3.430×10-6 | 0.5289 | 8.237×10-3 | 0.8977 | 3.465×10-3 | 0.8471 | 3.068×10-3 |
intermediate blocking | 0.9728 | 3.033×10-3 | 0.9934 | 2.969×10-3 | 0.9727 | 4.133×10-4 | 0.8922 | 2.543×10-4 |
cake layer | 0.8452 | 2.640×10-5 | 0.8770 | 2.512×10-5 | 0.8929 | 2.880×10-6 | 0.8985 | 1.070×10-6 |
Table 5 Correlation coefficient R2 and pollution index k of pollution model at different temperatures
Fouling models | 20˚C | 30˚C | 40˚C | 50˚C | ||||
---|---|---|---|---|---|---|---|---|
R2 | k | R2 | k | R2 | k | R2 | k | |
complete blocking | 0.9401 | 2.629×10-1 | 0.9827 | 3.280×10-1 | 0.9005 | 6.547×10-2 | 0.7565 | 5.062×10-2 |
standard blocking | 0.6005 | 3.430×10-6 | 0.5289 | 8.237×10-3 | 0.8977 | 3.465×10-3 | 0.8471 | 3.068×10-3 |
intermediate blocking | 0.9728 | 3.033×10-3 | 0.9934 | 2.969×10-3 | 0.9727 | 4.133×10-4 | 0.8922 | 2.543×10-4 |
cake layer | 0.8452 | 2.640×10-5 | 0.8770 | 2.512×10-5 | 0.8929 | 2.880×10-6 | 0.8985 | 1.070×10-6 |
1 | Huang H J, Ramaswamy S, Tschirner U W, et al. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology, 2008, 62(1): 1-21. |
2 | 国家药典委员会. 中华人民共和国药典-二部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. |
State Pharmacopoeia Committee. People's Republic of China (PRC) Pharmacopoeia—part Ⅱ: 2020 edition[M]. Beijing: China Pharmaceutical Science and Technology Press, 2020: 172. | |
3 | Huang L C, Lyu Q, Zheng W Y, et al. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv[J]. Chinese Medicine, 2021, 16(1): 73. |
4 | Pandey K B, Rizvi S I. Plant polyphenols as dietary antioxidants in human health and disease[J]. Oxidative Medicine and Cellular Longevity, 2009, 2(5): 270-278. |
5 | Zhang Q, Su Y Q, Zhang J F. Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf[J]. Molecules, 2013, 18(2): 1857-1868. |
6 | Xu D H, Yu C L, Wang J J, et al. Ultrafiltration strategy combined with nanoLC-MS/MS based proteomics for monitoring potential residual proteins in TCMIs[J]. Journal of Chromatography B, 2021, 1178: 122818. |
7 | Shao F L, Xu J T, Zhang J Y, et al. Study on the influencing factors of natural pectin's flocculation: their sources, modification, and optimization[J]. Water Environment Research, 2021, 93(10): 2261-2273. |
8 | 郭立玮, 邢卫红, 朱华旭, 等. 中药膜技术的"绿色制造"特征、国家战略需求及其关键科学问题与应对策略[J]. 中草药, 2017, 48(16): 3267-3279. |
Guo L W, Xing W H, Zhu H X, et al. "Green manufacture" characteristics and national strategic demand of Chinese material medica membrane technology and its key scientific problems and countermeasures[J]. Chinese Traditional and Herbal Drugs, 2017, 48(16): 3267-3279. | |
9 | Jha A K, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review[J]. Trends in Food Science & Technology, 2022, 119: 579-591. |
10 | Tchabo W, Ma Y K, Engmann F N, et al. Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology[J]. Industrial Crops and Products, 2015, 63: 214-225. |
11 | Jiang T, Ghosh R, Charcosset C. Extraction, purification and applications of curcumin from plant materials—a comprehensive review[J]. Trends in Food Science & Technology, 2021, 112: 419-430. |
12 | Horosanskaia E, Yuan L N, Seidel-Morgenstern A, et al. Purification of curcumin from ternary extract—similar mixtures of curcuminoids in a single crystallization step[J]. Crystals, 2020, 10(3): 206. |
13 | Sjölin M, Thuvander J, Wallberg O, et al. Purification of sucrose in sugar beet molasses by utilizing ceramic nanofiltration and ultrafiltration membranes[J]. Membranes, 2019, 10(1): 5. |
14 | Castro-Muñoz R, Yáñez-Fernández J, Fíla V. Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview[J]. Food Chemistry, 2016, 213: 753-762. |
15 | Martín J, Díaz-Montaña E J, Asuero A G. Recovery of anthocyanins using membrane technologies: a review[J]. Critical Reviews in Analytical Chemistry, 2018, 48(3): 143-175. |
16 | Wang K, Li W X, Fan Y Q, et al. Integrated membrane process for the purification of lactic acid from a fermentation broth neutralized with sodium hydroxide[J]. Industrial & Engineering Chemistry Research, 2013, 52(6): 2412-2417. |
17 | Laorko A, Li Z Y, Tongchitpakdee S, et al. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice[J]. Journal of Food Engineering, 2010, 100(3): 514-521. |
18 | Zhu Z Z, Guan Q Y, Koubaa M, et al. Preparation of highly clarified anthocyanin-enriched purple sweet potato juices by membrane filtration and optimization of their sensorial properties[J]. Journal of Food Processing and Preservation, 2017, 41(3): e12929. |
19 | Castro-Muñoz R, Yáñez-Fernández J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process[J]. Food and Bioproducts Processing, 2015, 95: 7-18. |
20 | Russo C. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW)[J]. Journal of Membrane Science, 2007, 288(1/2): 239-246. |
21 | Urošević T, Povrenović D, Vukosavljević P, et al. Recent developments in microfiltration and ultrafiltration of fruit juices[J]. Food and Bioproducts Processing, 2017, 106: 147-161. |
22 | 杨祖金, 江燕斌, 葛发欢, 等. 超滤膜技术分离杜仲叶绿原酸的研究[J]. 中药材, 2008, 31(4): 585-588. |
Yang Z J, Jiang Y B, Ge F H, et al. Study on isolation of chlorogenic acid from Eucommia ulmoides leaves by ultrafiltration technique[J]. Journal of Chinese Medicinal Materials, 2008, 31(4): 585-588. | |
23 | Lu Y W, Chen T, Chen X F, et al. Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent[J]. Journal of Membrane Science, 2016, 514: 476-486. |
24 | Zou D, Xu J R, Chen X F, et al. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment[J]. Separation and Purification Technology, 2019, 219: 127-136. |
25 | 钟文蔚, 郑东阳, 邹洪荟, 等. 基于中药液、固体物料指标成分含量相关性的膜工艺评估方法创新研究: 以杜仲叶水提液为例[J]. 中草药, 2021, 52(11): 3234-3238. |
Zhong W W, Zheng D Y, Zou H H, et al. A novel approach for evaluating the concentrations of indicative components in liquid and solid in the pharmaceutical process of TCM manufacturing using membrane based clarification—example given in the water extracts of Eucommiae Folium[J]. Chinese Traditional and Herbal Drugs, 2021, 52(11): 3234-3238. | |
26 | Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science, 1995, 100(3): 259-272. |
27 | Lu D W, Zhang T, Ma J. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets[J]. Environmental Science & Technology, 2015, 49(7): 4235-4244. |
28 | Sayehi M, Sahnoun R D, Fakhfakh S, et al. Effect of elaboration parameters of a membrane ceramic on the filtration process efficacy[J]. Ceramics International, 2018, 44(5): 5202-5208. |
29 | Chen X F, Qi T, Zhang Y, et al. Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide[J]. Journal of Membrane Science, 2020, 597: 117631. |
30 | Akamatsu K, Kagami Y, Nakao S I. Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes[J]. Journal of Membrane Science, 2020, 594: 117469. |
31 | Marshall A D, Munro P A, Trägårdh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: a literature review[J]. Desalination, 1993, 91(1): 65-108. |
32 | Vincent Vela M C, Álvarez Blanco S, Lora García J, et al. Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 232-241. |
33 | Corbatón-Báguena M J, Álvarez-Blanco S, Vincent-Vela M C. Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions[J]. Desalination, 2015, 360: 87-96. |
34 | 滕达, 李铁林, 李昂, 等. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271. |
Teng D, Li T L, Li A, et al. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube[J]. CIESC Journal, 2020, 71(S1): 261-271. | |
35 | Cui Z L, Peng W B, Fan Y Q, et al. Effect of cross-flow velocity on the critical flux of ceramic membrane filtration as a pre-treatment for seawater desalination[J]. Chinese Journal of Chemical Engineering, 2013, 21(4): 341-347. |
36 | Niu B H, Yang L, Meng S J, et al. Time-dependent analysis of polysaccharide fouling by Hermia models: reveal the structure of fouling layer[J]. Separation and Purification Technology, 2022, 302: 122093. |
37 | Qi T, Chen X F, Shi W D, et al. Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures[J]. Separation and Purification Technology, 2021, 278: 119589. |
38 | France T C, Bot F, Kelly A L, et al. The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk[J]. Separation and Purification Technology, 2021, 262: 118256. |
39 | Alper N, Onsekizoglu P, Acar J. Effects of various clarification treatments on phenolic compounds and organic acid compositions of pomegranate (Punica granatum L.) juice[J]. Journal of Food Processing and Preservation, 2011, 35(3): 313-319. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[10] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||