CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1639-1650.DOI: 10.11949/0438-1157.20221618
• Process system engineering • Previous Articles Next Articles
Cheng YUN1(), Qianlin WANG1(), Feng CHEN2, Xin ZHANG3, Zhan DOU1, Tingjun YAN1
Received:
2022-12-13
Revised:
2023-02-03
Online:
2023-06-02
Published:
2023-04-05
Contact:
Qianlin WANG
贠程1(), 王倩琳1(), 陈锋2, 张鑫3, 窦站1, 颜廷俊1
通讯作者:
王倩琳
作者简介:
贠程(1996—),男,硕士研究生,2020200629@buct.edu.cn
基金资助:
CLC Number:
Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure[J]. CIESC Journal, 2023, 74(4): 1639-1650.
贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650.
Add to citation manager EndNote|Ris|BibTeX
时刻 | ||||
---|---|---|---|---|
1 | 1.0 | 0.2 | 2.5 | 1.2 |
2 | 1.2 | 0.4 | 2.5 | 1.2 |
3 | 0.7 | 2.7 | 1.0 | 2.5 |
4 | 0.8 | 0.5 | 2.9 | 1.7 |
5 | 2.7 | 0.3 | 1.0 | 2.0 |
6 | 0.6 | 0.3 | 2.4 | 2.5 |
7 | 0.4 | 0.6 | 2.4 | 2.5 |
Table 1 An example of multi-source process data
时刻 | ||||
---|---|---|---|---|
1 | 1.0 | 0.2 | 2.5 | 1.2 |
2 | 1.2 | 0.4 | 2.5 | 1.2 |
3 | 0.7 | 2.7 | 1.0 | 2.5 |
4 | 0.8 | 0.5 | 2.9 | 1.7 |
5 | 2.7 | 0.3 | 1.0 | 2.0 |
6 | 0.6 | 0.3 | 2.4 | 2.5 |
7 | 0.4 | 0.6 | 2.4 | 2.5 |
复杂网络 | 邻接矩阵 | 最短路径结果 |
---|---|---|
Table 2 An example of calculation process for the shortest paths
复杂网络 | 邻接矩阵 | 最短路径结果 |
---|---|---|
变量 | 说明 | 变量 | 说明 |
---|---|---|---|
XMEAS(1) | A进料流量值 | XMEAS(12) | 产品分离器液位值 |
XMEAS(2) | D进料流量值 | XMEAS(13) | 产品分离器压力值 |
XMEAS(3) | E进料流量值 | XMEAS(14) | 产品分离器下部出料值 |
XMEAS(4) | A和C进料流量值 | XMEAS(15) | 汽提塔液位值 |
XMEAS(5) | 循环流量值 | XMEAS(16) | 汽提塔压力值 |
XMEAS(6) | 反应器进料流量值 | XMEAS(17) | 汽提塔下部出料值 |
XMEAS(7) | 反应器压力值 | XMEAS(18) | 汽提塔温度值 |
XMEAS(8) | 反应器液位值 | XMEAS(19) | 汽提塔蒸汽流量值 |
XMEAS(9) | 反应器温度值 | XMEAS(20) | 压缩机功率值 |
XMEAS(10) | 放空流量值 | XMEAS(21) | 反应器冷却水出口温度值 |
XMEAS(11) | 产品分离器温度值 | XMEAS(22) | 冷凝器冷却水出口温度值 |
Table 3 Measured variables of the TE process (22 process variables)
变量 | 说明 | 变量 | 说明 |
---|---|---|---|
XMEAS(1) | A进料流量值 | XMEAS(12) | 产品分离器液位值 |
XMEAS(2) | D进料流量值 | XMEAS(13) | 产品分离器压力值 |
XMEAS(3) | E进料流量值 | XMEAS(14) | 产品分离器下部出料值 |
XMEAS(4) | A和C进料流量值 | XMEAS(15) | 汽提塔液位值 |
XMEAS(5) | 循环流量值 | XMEAS(16) | 汽提塔压力值 |
XMEAS(6) | 反应器进料流量值 | XMEAS(17) | 汽提塔下部出料值 |
XMEAS(7) | 反应器压力值 | XMEAS(18) | 汽提塔温度值 |
XMEAS(8) | 反应器液位值 | XMEAS(19) | 汽提塔蒸汽流量值 |
XMEAS(9) | 反应器温度值 | XMEAS(20) | 压缩机功率值 |
XMEAS(10) | 放空流量值 | XMEAS(21) | 反应器冷却水出口温度值 |
XMEAS(11) | 产品分离器温度值 | XMEAS(22) | 冷凝器冷却水出口温度值 |
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 0.571 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 0.800 | 0 | 0.800 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 0.571 | 0.857 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
Table 4 Adjacency matrix of the TE process
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 0.571 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 0.800 | 0 | 0.800 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 0.571 | 0.857 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 1 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 1 | 0 | 1 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 1 | 0 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
Table 5 Results from the shortest paths of the TE process
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 1 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 1 | 0 | 1 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 1 | 0 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 0 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 0 | 0 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
Table 6 Similarity matrix of the TE process
Item | XMEAS(1) | XMEAS(2) | ··· | XMEAS(9) | XMEAS(10) | ··· | XMEAS(21) | XMEAS(22) |
---|---|---|---|---|---|---|---|---|
XMEAS(1) | 0 | 0 | 0 | 0 | 0 | 0 | ||
XMEAS(2) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(9) | 0 | 0 | 0 | 0 | 1 | 0 | ||
XMEAS(10) | 0 | 0 | 0 | 0 | 0 | 0 | ||
··· | ··· | |||||||
XMEAS(21) | 0 | 0 | 1 | 0 | 0 | 0 | ||
XMEAS(22) | 0 | 0 | 0 | 0 | 0 | 0 |
参数 | 最优值 |
---|---|
各层节点数 | 256-64-16-64-256 |
训练批次 | 4 |
迭代次数 | 150 |
惩罚因子β | 1×10-6 |
损失 | 0.691 |
Table 7 Optimal parameters of the DSAE model
参数 | 最优值 |
---|---|
各层节点数 | 256-64-16-64-256 |
训练批次 | 4 |
迭代次数 | 150 |
惩罚因子β | 1×10-6 |
损失 | 0.691 |
序号 | 网络节点 |
---|---|
社团Ⅰ | XMEAS(4)—A和C组分进料流量、XMEAS(10)—放空流量、XMEAS(16)—汽提塔压力、XMEAS(22)—冷凝器冷却水出口温度 |
社团Ⅱ | XMEAS(2)—D组分进料流量、XMEAS(3)—E组分进料流量、XMEAS(7)—反应器压力、XMEAS(17)—汽提塔下部出料、XMEAS(18)—汽提塔温度 |
社团Ⅲ | XMEAS(5)—循环流量、XMEAS(6)—反应器进料流量、XMEAS(8)—反应器液位、XMEAS(12)—产品分离器液位、XMEAS(14)—产品分离器下部出料、XMEAS(19)—汽提塔蒸汽流量、XMEAS(20)—压缩机功率 |
社团Ⅳ | XMEAS(1)—A组分进料流量、XMEAS(9)—反应器温度、XMEAS(11)—产品分离器温度、XMEAS(13)—产品分离器压力、XMEAS(15)—汽提塔液位、XMEAS(21)—反应器冷却水出口温度 |
Table 8 The node corresponding to every community structure in risk evolution network
序号 | 网络节点 |
---|---|
社团Ⅰ | XMEAS(4)—A和C组分进料流量、XMEAS(10)—放空流量、XMEAS(16)—汽提塔压力、XMEAS(22)—冷凝器冷却水出口温度 |
社团Ⅱ | XMEAS(2)—D组分进料流量、XMEAS(3)—E组分进料流量、XMEAS(7)—反应器压力、XMEAS(17)—汽提塔下部出料、XMEAS(18)—汽提塔温度 |
社团Ⅲ | XMEAS(5)—循环流量、XMEAS(6)—反应器进料流量、XMEAS(8)—反应器液位、XMEAS(12)—产品分离器液位、XMEAS(14)—产品分离器下部出料、XMEAS(19)—汽提塔蒸汽流量、XMEAS(20)—压缩机功率 |
社团Ⅳ | XMEAS(1)—A组分进料流量、XMEAS(9)—反应器温度、XMEAS(11)—产品分离器温度、XMEAS(13)—产品分离器压力、XMEAS(15)—汽提塔液位、XMEAS(21)—反应器冷却水出口温度 |
序号 | 重要度值 | 序号 | 重要度值 |
---|---|---|---|
5 | 4.538 | 18 | 2.443 |
15 | 4.538 | 8 | 2.153 |
21 | 4.538 | 10 | 1.827 |
17 | 3.921 | 22 | 1.601 |
20 | 3.921 | 4 | 1.553 |
1 | 3.591 | 2 | 0 |
13 | 3.591 | 3 | 0 |
7 | 2.890 | 9 | 0 |
11 | 2.890 | 12 | 0 |
14 | 2.890 | 16 | 0 |
6 | 2.786 | 19 | 0 |
Table 9 Node importance ranking of the TE process
序号 | 重要度值 | 序号 | 重要度值 |
---|---|---|---|
5 | 4.538 | 18 | 2.443 |
15 | 4.538 | 8 | 2.153 |
21 | 4.538 | 10 | 1.827 |
17 | 3.921 | 22 | 1.601 |
20 | 3.921 | 4 | 1.553 |
1 | 3.591 | 2 | 0 |
13 | 3.591 | 3 | 0 |
7 | 2.890 | 9 | 0 |
11 | 2.890 | 12 | 0 |
14 | 2.890 | 16 | 0 |
6 | 2.786 | 19 | 0 |
25 | Lima-Mendez G, Faust K, Henry N, et al. Ocean plankton. Determinants of community structure in the global plankton interactome[J]. Science, 2015, 348(6237): 1262073. |
26 | Newman M E J. Detecting community structure in networks[J]. The European Physical Journal B-Condensed Matter, 2004, 38(2): 321-330. |
27 | 高庆一, 李牧. 基于GN算法的重叠社区识别方法[J]. 华中科技大学学报(自然科学版), 2015, 43(9): 13-18. |
Gao Q Y, Li M. Method of identifying overlapping communities based on GN algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(9): 13-18. | |
28 | Zhang Z Q, Pu P, Han D D, et al. Self-adaptive Louvain algorithm: fast and stable community detection algorithm based on the principle of small probability event[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506: 975-986. |
29 | 尚敬文, 王朝坤, 辛欣, 等. 基于深度稀疏自动编码器的社区发现算法[J]. 软件学报, 2017, 28(3): 648-662. |
Shang J W, Wang C K, Xin X, et al. Community detection algorithm based on deep sparse autoencoder[J]. Journal of Software, 2017, 28(3): 648-662. | |
30 | 李晓佳, 张鹏, 狄增如, 等. 复杂网络中的社团结构[J]. 复杂系统与复杂性科学, 2008, 5(3): 19-42. |
Li X J, Zhang P, Di Z R, et al. Community structure in complex networks[J]. Complex Systems and Complexity Science, 2008, 5(3): 19-42. | |
31 | 来杰, 王晓丹, 向前, 等. 自编码器及其应用综述[J]. 通信学报, 2021, 42(9): 218-230. |
Lai J, Wang X D, Xiang Q, et al. Review on autoencoder and its application[J]. Journal on Communications, 2021, 42(9): 218-230. | |
32 | Bayer F M, Kozakevicius A J, Cintra R J. An iterative wavelet threshold for signal denoising[J]. Signal Processing, 2019, 162: 10-20. |
1 | Chen C, Reniers G. Chemical industry in China: the current status, safety problems, and pathways for future sustainable development[J]. Safety Science, 2020, 128: 104741. |
2 | 张圣柱, 韩玉鑫, 曹旭, 等. 我国危险化学品产业转移及安全风险分析[J]. 中国安全生产科学技术, 2022, 18(11): 46-52. |
Zhang S Z, Han Y X, Cao X, et al. Analysis on industrial transfer of hazardous chemicals and its safety risk in China[J]. Journal of Safety Science and Technology, 2022, 18(11): 46-52. | |
3 | 王德亮, 周志茂, 林梦蕾, 等. 中国炼油转型化工现状及发展约束因素的思考[J]. 化工进展, 2021, 40(10): 5854-5860. |
Wang D L, Zhou Z M, Lin M L, et al. Status and thinking of development constraints of refining to chemical transformation in China[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5854-5860. | |
4 | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
Wang Z Z, Suo H S, Zhao X L. Research and construction of digital twin intelligent ethylene plant[J]. CIESC Journal, 2023, 74(3): 1175-1186. | |
5 | 王倩琳, 田文慧, 张东胜, 等. 基于FRAM的化工装置事故情景推演研究[J]. 过程工程学报, 2022, 22(6): 782-791. |
Wang Q L, Tian W H, Zhang D S, et al. Scenario deduction on chemical plant accidents using FRAM[J]. The Chinese Journal of Process Engineering, 2022, 22(6): 782-791. | |
6 | 刘庆龙, 曲秋影, 赵东风, 等. 基于多源异构数据融合的化工安全风险动态量化评估方法[J]. 化工学报, 2021, 72(3): 1769-1777. |
Liu Q L, Qu Q Y, Zhao D F, et al. Dynamic quantitative assessment method of chemical safety risk based on multi-source heterogeneous data fusion[J]. CIESC Journal, 2021, 72(3): 1769-1777. | |
7 | Motalifu M, Tian Y, Liu Y, et al. Chemical process safety education in China: an overview and the way forward[J]. Safety Science, 2022, 148: 105643. |
8 | Wang H Z, Chen B Z, He X R, et al. SDG-based HAZOP analysis of operating mistakes for PVC process[J]. Process Safety and Environmental Protection, 2009, 87(1): 40-46. |
9 | Luo T Y, Wu C, Duan L X. Fishbone diagram and risk matrix analysis method and its application in safety assessment of natural gas spherical tank[J]. Journal of Cleaner Production, 2018, 174: 296-304. |
10 | Taleb-Berrouane M, Khan F, Hawboldt K. Corrosion risk assessment using adaptive bow-tie (ABT) analysis[J]. Reliability Engineering & System Safety, 2021, 214: 107731. |
11 | Song M C, Lind M, Yang J, et al. Integrative decision support for accident emergency response by combining MFM and Go-Flow[J]. Process Safety and Environmental Protection, 2021, 155: 131-144. |
12 | Li X H, Liu Y Z, Abbassi R, et al. A Copula-Bayesian approach for risk assessment of decommissioning operation of aging subsea pipelines[J]. Process Safety and Environmental Protection, 2022, 167: 412-422. |
13 | 李沛洁, 杨博, 李宏光. 基于关联规则的条件状态模糊Petri网及其在故障诊断中的应用[J]. 化工学报, 2018, 69(8): 3517-3527. |
Li P J, Yang B, Li H G. Association rules based conditional state fuzzy Petri nets with applications in fault diagnosis[J]. CIESC Journal, 2018, 69(8): 3517-3527. | |
14 | Bauer M, Thornhill N F. A practical method for identifying the propagation path of plant-wide disturbances[J]. Journal of Process Control, 2008, 18(7/8): 707-719. |
15 | Amin M T. An integrated methodology for fault detection, root cause diagnosis, and propagation pathway analysis in chemical process systems[J]. Cleaner Engineering and Technology, 2021, 4: 100187. |
16 | 苏婉君, 周迎, 周诚. 地铁深基坑施工风险时空演化及控制[J]. 土木工程与管理学报, 2017, 34(6): 133-140. |
Su W J, Zhou Y, Zhou C. Risk evolution and control in metro foundation constructions[J]. Journal of Civil Engineering and Management, 2017, 34(6): 133-140. | |
17 | 罗文慧, 蔡凤田, 吴初娜, 等. 基于文本挖掘的道路运输安全风险源辨识模型[J]. 西南交通大学学报, 2021, 56(1): 147-152. |
Luo W H, Cai F T, Wu C N, et al. Text-mining based risk source identification model for transportation safety[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 147-152. | |
18 | Xu K K, Hu J Q, Zhang L B, et al. A risk factor tracing method for LNG receiving terminals based on GAT and a bidirectional LSTM network[J]. Process Safety and Environmental Protection, 2023, 170: 694-708. |
19 | Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. |
20 | Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. |
21 | 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 2006. |
Wang X F, Li X, Chen G R. Theory and Application of Complex Networks[M]. Beijing: Tsinghua University Press, 2006. | |
22 | Abedi A, Gaudard L, Romerio F. Review of major approaches to analyze vulnerability in power system[J]. Reliability Engineering & System Safety, 2019, 183: 153-172. |
23 | Cats O, Koppenol G J, Warnier M. Robustness assessment of link capacity reduction for complex networks: application for public transport systems[J]. Reliability Engineering & System Safety, 2017, 167: 544-553. |
24 | Wei D J, Zhang X G, Mahadevan S. Measuring the vulnerability of community structure in complex networks[J]. Reliability Engineering & System Safety, 2018, 174: 41-52. |
33 | Yu Y, Zhu D, Wang J D, et al. Abnormal data detection for multivariate alarm systems based on correlation directions[J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 43-55. |
34 | Koramati S, Bandhu Majumdar B, Pani A, et al. A registry-based investigation of road traffic fatality risk factors using police data: a case study of Hyderabad, India[J]. Safety Science, 2022, 153: 105805. |
35 | Wang J Y, Yu X Y, Zong R W, et al. Evacuation route optimization under real-time toxic gas dispersion through CFD simulation and Dijkstra algorithm[J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104733. |
36 | 张军祥, 李书琴, 刘斌. 基于平滑l1范数的深度稀疏自动编码器社区识别算法[J]. 计算机应用研究, 2020, 37(4): 1063-1068. |
Zhang J X, Li S Q, Liu B. Sparse autoencoder community recognition algorithm based on smoothed l1 norm[J]. Application Research of Computers, 2020, 37(4): 1063-1068. | |
37 | 陈雨, 韩永明, 王尊, 等. 基于数据复杂网络理论的系统故障检测方法[J]. 化工学报, 2014, 65(11): 4503-4508. |
Chen Y, Han Y M, Wang Z, et al. System fault detection based on data-driven and complex networks theory[J]. CIESC Journal, 2014, 65(11): 4503-4508. | |
38 | Liu N, Wang J, Sun S L, et al. Optimized principal component analysis and multi-state Bayesian network integrated method for chemical process monitoring and variable state prediction[J]. Chemical Engineering Journal, 2022, 430: 132617. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[7] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[12] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[13] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
[14] | Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234. |
[15] | Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207-4216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||