CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2000-2012.DOI: 10.11949/0438-1157.20230265
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zihan YUAN(), Shuyan WANG(), Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA
Received:
2023-03-20
Revised:
2023-04-25
Online:
2023-06-29
Published:
2023-05-05
Contact:
Shuyan WANG
袁子涵(), 王淑彦(), 邵宝力, 谢磊, 陈曦, 马一玫
通讯作者:
王淑彦
作者简介:
袁子涵(1995—),男,博士研究生,yuanzihan@stu.nepu.edu.cn
基金资助:
CLC Number:
Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed[J]. CIESC Journal, 2023, 74(5): 2000-2012.
袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
Add to citation manager EndNote|Ris|BibTeX
符号 | 参数 | 文献[ | 本文模拟参数 | 文献[ | 本文模拟参数 |
---|---|---|---|---|---|
Din | 流化床直径/mm | 90 | 90 | 68 | 68 |
H | 流化床高度/mm | 2000 | 1000 | 1100 | 1100 |
h0 | 初始床高/mm | 120 | 120 | — | 200 |
εs,max | 最大颗粒浓度 | — | 0.63 | — | 0.63 |
ε0 | 初始颗粒浓度 | 0.578 | 0.578 | — | 0.6 |
dp | 颗粒直径/mm | 4.6 | 4.6 | 3 | |
ρs | 颗粒密度/(kg/m3) | 2258 | 2258 | 2500 | 2500 |
ρl | 流体密度/(kg/m3) | 1001 | 1001 | 997 | 997 |
K | 稠度系数/(Pa·s n ) | 0.013 | 0.013 | 0.0299 | 0.0299 |
n | 流性指数 | 0.82 | 0.82 | 0.719 | 0.719 |
u0 | 流体表观速度/(cm/s) | 5.35~8.96 | Same | 2.416~10.436 | Same |
e | 法向恢复系数 | — | 0.98, ewet | — | 0.98, ewet |
网格数 | — | 10×100×10 | — | 10×100×10 |
Table 1 Parameters used in numerical simulations and experiments by Ref.[15-16]
符号 | 参数 | 文献[ | 本文模拟参数 | 文献[ | 本文模拟参数 |
---|---|---|---|---|---|
Din | 流化床直径/mm | 90 | 90 | 68 | 68 |
H | 流化床高度/mm | 2000 | 1000 | 1100 | 1100 |
h0 | 初始床高/mm | 120 | 120 | — | 200 |
εs,max | 最大颗粒浓度 | — | 0.63 | — | 0.63 |
ε0 | 初始颗粒浓度 | 0.578 | 0.578 | — | 0.6 |
dp | 颗粒直径/mm | 4.6 | 4.6 | 3 | |
ρs | 颗粒密度/(kg/m3) | 2258 | 2258 | 2500 | 2500 |
ρl | 流体密度/(kg/m3) | 1001 | 1001 | 997 | 997 |
K | 稠度系数/(Pa·s n ) | 0.013 | 0.013 | 0.0299 | 0.0299 |
n | 流性指数 | 0.82 | 0.82 | 0.719 | 0.719 |
u0 | 流体表观速度/(cm/s) | 5.35~8.96 | Same | 2.416~10.436 | Same |
e | 法向恢复系数 | — | 0.98, ewet | — | 0.98, ewet |
网格数 | — | 10×100×10 | — | 10×100×10 |
Fig.4 Instantaneous concentration of particles with different flow behavior indexes and consistency coefficients at 50 s (left: dry particles; right: wet particles)
Fig.5 Time-averaged concentration of particles, normal restitution coefficient and liquid film thickness with different flow behavior indexes and consistency coefficients
Fig.6 Radial distributions of the time-averaged particles concentration with different flow behavior indexes and consistency coefficients at the same height
Fig.7 Radial distributions of the time-averaged axial velocity of particles with different flow behavior indexes and consistency coefficients at the same height
1 | Cheng Y, Zhu J X. CFD modelling and simulation of hydrodynamics in liquid-solid circulating fluidized beds[J]. The Canadian Journal of Chemical Engineering, 2005, 83(2): 177-185. |
2 | 郭慕孙,李洪钟.流态化手册[M].北京:石油工业出版社,1994. |
Kwauk M S, Li H Z. Handbook of Fluidization[M]. Beijing: Petroleum Industry Press, 1994. | |
3 | Lu H L, Gidaspow D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. |
4 | Yang L, Du K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(5): 2033-2054. |
5 | Shende T, Niasar V J, Babaei M. Effective viscosity and Reynolds number of non-Newtonian fluids using Meter model[J]. Rheologica Acta, 2021, 60(1): 11-21. |
6 | Qi Z, Kuang S B, Yu A B. Lattice Boltzmann investigation of non-Newtonian fluid flow through a packed bed of uniform spheres[J]. Powder Technology, 2019, 343: 225-236. |
7 | Kandasamy S, Venkatachalam S. Prediction of bed voidage in multi-phase fluidized bed using air/Newtonian and non-Newtonian liquid systems[J]. Desalination and Water Treatment, 2021, 211: 92-98. |
8 | Pang B X, Wang S Y, Lu H L. A modified drag model for power-law fluid-particle flow used in computational fluid dynamics simulation[J]. Advanced Powder Technology, 2021, 32(4): 1207-1218. |
9 | Shah S N, El Fadili Y, Chhabra R P. New model for single spherical particle settling velocity in power law (visco-inelastic) fluids[J]. International Journal of Multiphase Flow, 2007, 33(1): 51-66. |
10 | Marinack M C, Musgrave R E, C F Ⅲ Higgs. Experimental investigations on the coefficient of restitution of single particles[J]. Tribology Transactions, 2013, 56(4): 572-580. |
11 | Crüger B, Salikov V, Heinrich S, et al. Coefficient of restitution for particles impacting on wet surfaces: an improved experimental approach[J]. Particuology, 2016, 25: 1-9. |
12 | Liu G D, Yu F, Lu H L, et al. CFD-DEM simulation of liquid-solid fluidized bed with dynamic restitution coefficient[J]. Powder Technology, 2016, 304: 186-197. |
13 | Gao Z Y, Liu G D, Guo X Y, et al. A dynamic coefficient of restitution applied to two-fluid model in liquid-solid fluidized bed[J]. Powder Technology, 2022, 402: 117335. |
14 | Zhong H B, Zhang Y N, Xiong Q G, et al. Two-fluid modeling of a wet spouted fluidized bed with wet restitution coefficient model[J]. Powder Technology, 2020, 364: 363-372. |
15 | Broniarz-Press L, Agacinski P, Rozanski J. Shear-thinning fluids flow in fixed and fluidised beds[J]. International Journal of Multiphase Flow, 2007, 33(6): 675-689. |
16 | Miura H, Takahashi T, Ichikawa J, et al. Bed expansion in liquid-solid two-phase fluidized beds with Newtonian and non-Newtonian fluids over the wide range of Reynolds numbers[J]. Powder Technology, 2001, 117(3): 239-246. |
17 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
18 | Carman P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: S32-S48. |
19 | Sheffield R E, Metzner A B. Flows of nonlinear fluids through porous media[J]. AIChE Journal, 1976, 22(4): 736-744. |
20 | 田兴旺, 王平, 徐士鸣. 颗粒堆积多孔介质内幂律流体的流动阻力特性[J]. 哈尔滨工业大学学报, 2017, 49(1):126-132. |
Tian X W, Wang P, Xu S M. Flow resistance characteristics of power law fluid flow through granular porous medium[J]. Journal of Harbin Institute of Technology, 2017, 49(1):126-132. | |
21 | Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
22 | Kemblowski Z, Michniewicz M. A new look at the laminar flow of power law fluids through granular beds[J]. Rheologica Acta, 1979, 18(6): 730-739. |
30 | Shenoy A V. Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media[J]. Transport in Porous Media, 1993, 11(3): 219-241. |
31 | Richardson J F, Zaki W N. The sedimentation of a suspension of uniform spheres under conditions of viscous flow[J]. Chemical Engineering Science, 1954, 3(2): 65-73. |
32 | Gollwitzer F, Rehberg I, Kruelle C A, et al. Coefficient of restitution for wet particles[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1 Pt 1): 011303. |
33 | Åkesjö A, Vamling L, Sasic S, et al. On the measuring of film thickness profiles and local heat transfer coefficients in falling films[J]. Experimental Thermal and Fluid Science, 2018, 99: 287-296. |
34 | 陆慧林. 稠密颗粒流体两相流的颗粒动理学[M]. 北京: 科学出版社, 2017. |
Lu H L. Particle Dynamics of Dense Granular Fluid Two-Phase Flow[M]. Beijing: Science Press, 2017. | |
35 | Jiang Z C, Hagemeier T, Bück A, et al. Experimental measurements of particle collision dynamics in a pseudo-2D gas-solid fluidized bed[J]. Chemical Engineering Science, 2017, 167: 297-316. |
23 | Christopher R H, Middleman S. Power-law flow through a packed tube[J]. Industrial & Engineering Chemistry Fundamentals, 1965, 4(4): 422-426. |
24 | Denn M M. Continuous drawing of liquids to form fibers[J]. Annual Review of Fluid Mechanics, 1980, 12: 365-387. |
25 | Foscolo P U, Gibilaro L G, Waldram S P. A unified model for particulate expansion of fluidised beds and flow in fixed porous media[J]. Chemical Engineering Science, 1983, 38(8): 1251-1260. |
26 | Dharmadhikari R V, Kale D D. Flow of non-Newtonian fluids through porous media[J]. Chemical Engineering Science, 1985, 40(3): 527-529. |
27 | Agarwal P K, O’Neill B K. Transport phenomena in multi-particle systems(Ⅰ): Pressure drop and friction factors: unifying the hydraulic-radius and submerged-object approaches[J]. Chemical Engineering Science, 1988, 43(9): 2487-2499. |
28 | Chhabra R P, Comiti J, Machač I. Flow of non-Newtonian fluids in fixed and fluidised beds[J]. Chemical Engineering Science, 2001, 56(1): 1-27. |
29 | Poggie J, Smits A J. Wavelet analysis of wall-pressure fluctuations in a supersonic blunt-fin flow[J]. AIAA Journal, 1997, 35(10): 1597-1603. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||