CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2013-2021.DOI: 10.11949/0438-1157.20221542
• Separation engineering • Previous Articles Next Articles
Caihong LIN1(), Li WANG1, Yu WU2, Peng LIU2, Jiangfeng YANG1(
), Jinping LI1
Received:
2022-11-30
Revised:
2023-04-27
Online:
2023-06-29
Published:
2023-05-05
Contact:
Jiangfeng YANG
蔺彩虹1(), 王丽1, 吴瑜2, 刘鹏2, 杨江峰1(
), 李晋平1
通讯作者:
杨江峰
作者简介:
蔺彩虹(1997—),女,硕士研究生,626803611@qq.com
CLC Number:
Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O[J]. CIESC Journal, 2023, 74(5): 2013-2021.
蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021.
样品 | 质量浓度/(mg/L) | ELi/% | ENa/% | EK/% | ECs/% | 分子式 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CSi | CAl | CLi | CNa | CK | CCs | |||||||
LiA | 67.41 | 72.43 | 9.88 | 25.59 | — | — | 1.80 | 56.15 | — | — | — | Na44Li57Al101Si91O384 |
NaA | 58.57 | 48.46 | — | 58.57 | — | — | 1.82 | — | 100.00 | — | — | Na101Al101Si91O384 |
KA | 46.61 | 52.98 | — | 29.26 | 23.06 | — | 1.78 | — | — | 31.70 | — | Na69K32Al101Si91O384 |
CsA | 52.78 | 55.70 | — | 27.16 | — | 112.2 | 1.82 | — | — | — | 42.50 | Na59Cs42Al101Si91O384 |
Table 1 Element content and cation exchange degree on A-type zeolite
样品 | 质量浓度/(mg/L) | ELi/% | ENa/% | EK/% | ECs/% | 分子式 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CSi | CAl | CLi | CNa | CK | CCs | |||||||
LiA | 67.41 | 72.43 | 9.88 | 25.59 | — | — | 1.80 | 56.15 | — | — | — | Na44Li57Al101Si91O384 |
NaA | 58.57 | 48.46 | — | 58.57 | — | — | 1.82 | — | 100.00 | — | — | Na101Al101Si91O384 |
KA | 46.61 | 52.98 | — | 29.26 | 23.06 | — | 1.78 | — | — | 31.70 | — | Na69K32Al101Si91O384 |
CsA | 52.78 | 55.70 | — | 27.16 | — | 112.2 | 1.82 | — | — | — | 42.50 | Na59Cs42Al101Si91O384 |
样品 | ELi/% | ENa/% | EK/% | ECs/% | |
---|---|---|---|---|---|
LiA | 1.90 | — | — | — | — |
NaA | 1.86 | — | 100.0 | — | — |
KA | 1.80 | — | — | 30.5 | — |
CsA | 1.82 | — | — | — | 54.3 |
Table 2 EDS elemental distribution of A-type zeolites with different cations
样品 | ELi/% | ENa/% | EK/% | ECs/% | |
---|---|---|---|---|---|
LiA | 1.90 | — | — | — | — |
NaA | 1.86 | — | 100.0 | — | — |
KA | 1.80 | — | — | 30.5 | — |
CsA | 1.82 | — | — | — | 54.3 |
吸附剂 | 吸附质 | q1/(cm3/g) | q2/(cm3/g) | b1 | b2 | R2 |
---|---|---|---|---|---|---|
LiA | CO2 | 60.20 | 63.35 | 46.17 | 3.79 | 0.999 |
N2O | 66.25 | 40.68 | 34.32 | 1.37 | 0.999 | |
NaA | CO2 | 47.31 | 26.54 | 54.49 | 0.70 | 0.999 |
N2O | 58.03 | 1.92 | 44.29 | 44.40 | 0.999 | |
KA | CO2 | 29.55 | 36.53 | 63.67 | 9.06 | 0.999 |
N2O | 86.72 | 32.71 | 2.94 | 32.71 | 0.999 |
Table 3 Dual-Site Langmuir parameters for CO2 and N2O at 25℃ on A-type zeolite
吸附剂 | 吸附质 | q1/(cm3/g) | q2/(cm3/g) | b1 | b2 | R2 |
---|---|---|---|---|---|---|
LiA | CO2 | 60.20 | 63.35 | 46.17 | 3.79 | 0.999 |
N2O | 66.25 | 40.68 | 34.32 | 1.37 | 0.999 | |
NaA | CO2 | 47.31 | 26.54 | 54.49 | 0.70 | 0.999 |
N2O | 58.03 | 1.92 | 44.29 | 44.40 | 0.999 | |
KA | CO2 | 29.55 | 36.53 | 63.67 | 9.06 | 0.999 |
N2O | 86.72 | 32.71 | 2.94 | 32.71 | 0.999 |
样品 | CO2吸附量/(cm3/g) | N2O吸附量/(cm3/g) | CO2/N2O选择性 |
---|---|---|---|
LiA | 81.31 | 81.04 | 0.8 |
NaA | 92.02 | 87.82 | 2.0 |
KA | 80.21 | 67.55 | 2.6 |
CsA | 0.48 | 1.22 | — |
Table 4 Adsorption capacity and IAST selectivity of A-type zeolite at 25℃
样品 | CO2吸附量/(cm3/g) | N2O吸附量/(cm3/g) | CO2/N2O选择性 |
---|---|---|---|
LiA | 81.31 | 81.04 | 0.8 |
NaA | 92.02 | 87.82 | 2.0 |
KA | 80.21 | 67.55 | 2.6 |
CsA | 0.48 | 1.22 | — |
1 | Wuebbles D J. Nitrous oxide: no laughing matter[J]. Science, 2009, 326(5949): 56-57. |
2 | Highton M P, Bakken L R, Dörsch P, et al. Soil N2O emission potential falls along a denitrification phenotype gradient linked to differences in microbiome, rainfall and carbon availability[J]. Soil Biology and Biochemistry, 2020, 150: 108004. |
3 | Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
4 | Hu Z, Lee J W, Chandran K, et al. Nitrous oxide (N2O) emission from aquaculture: a review[J]. Environmental Science & Technology, 2012, 46(12): 6470-6480. |
5 | Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
6 | Bongaarts J. Climate change: the IPCC scientific assessment[J]. Population and Development Review, 1992, 18: 191. |
7 | Schilt A, Brook E J, Bauska T K, et al. Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation[J]. Nature, 2014, 516(7530): 234-237. |
8 | Montzka S A, Dlugokencky E J, Butler J H. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476(7358): 43-50. |
9 | Kay S. Synthetic chemistry with nitrous oxide[J]. Chemical Society Reviews, 2015, 44(17): 6375-6386. |
10 | Tskhovrebov A G, Vuichoud B, Solari E, et al. Adducts of nitrous oxide and N-heterocyclic carbenes: syntheses, structures, and reactivity[J]. Journal of the American Chemical Society, 2013, 135(25): 9486-9492. |
11 | Liu N, Chen B H, Li Y P, et al. Charge transfer analysis on the direct decomposition of nitrous oxide over Fe-BEA zeolite: an experimental and density functional study[J]. Journal of Physical Chemistry C, 2011, 115(26): 12883-12890. |
12 | Syakila A, Kroeze C. The global nitrous oxide budget revisited[J]. Greenhouse Gas Measurement and Management, 2011, 1(1): 17-26. |
13 | Shimizu A, Tanaka K, Fujimori M. Abatement technologies for N2O emissions in the adipic acid industry[J]. Chemosphere-Global Change Science, 2000, 2(3/4): 425-434. |
14 | Reed S, Hutchison J. Green chemistry in the organic teaching laboratory: an environmentally benign synthesis of adipic acid[J]. Journal of Chemical Education, 2000, 77: 1627. |
15 | van Duuren J B J H, Brehmer B, Mars A E, et al. A limited LCA of bio-adipic acid: manufacturing the nylon-6, 6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks[J]. Biotechnology and Bioengineering, 2011, 108(6): 1298-1306. |
16 | Xiao Q, Yang F F, Zhuang J, et al. Facile synthesis of uniform FeZSM-5 crystals with controlled size and their application to N2O decomposition[J]. Microporous and Mesoporous Materials, 2013, 167: 38-43. |
17 | Zhang F M, Chen X, Zhuang J, et al. Direct oxidation of benzene to phenol by N2O over meso-Fe-ZSM-5 catalysts obtained via alkaline post-treatment[J]. Catalysis Science & Technology, 2011, 1(7): 1250-1255. |
18 | Ouyang C, Li Y X, Li J W. The ZSM-5-catalyzed oxidation of benzene to phenol with N2O: effect of Lewis acid sites[J]. Catalysts, 2019, 9(1): 44. |
19 | Chen D L, Wang N W, Wang F F, et al. Utilizing the gate-opening mechanism in ZIF-7 for adsorption discrimination between N2O and CO2 [J]. Journal of Physical Chemistry C, 2014, 118(31): 17831-17837. |
20 | Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222. |
21 | Wang L, Liu J Q, Lin C H, et al. Effects of different alkali metal cations in FAU zeolites on the separation performance of CO2/N2O[J]. Chemical Engineering Journal, 2022, 431: 134257. |
22 | Eguchi R, Uchida S, Mizuno N. Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals[J]. Angewandte Chemie, 2012, 51(7): 1635-1639. |
23 | Wu T B, Niu Z Y, Feng L, et al. Performance analysis of VPSA process for separating N2O from adipic acid tail gas[J]. Separation and Purification Technology, 2021, 256: 117750. |
24 | Sircar S. Pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389-1392. |
25 | Abd A A, Othman M R, Naji S Z, et al. Methane enrichment in biogas mixture using pressure swing adsorption: process fundamental and design parameters[J]. Materials Today Sustainability, 2021, 11/12: 100063. |
26 | 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
Xu R R. Molecular Sieves and Porous Materials Chemistry[M]. Beijing: Science Press, 2004. | |
27 | 范延臻, 王宝贞. 活性炭表面化学[J]. 煤炭转化, 2000, 23(4): 26-30. |
Fan Y Z, Wang B Z. Surface chemistry of activated carbon[J]. Coal Conversion, 2000, 23(4): 26-30. | |
28 | Zhou H C J, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418. |
29 | Wang L, Zhang F F, Wang C, et al. Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation[J]. Separation and Purification Technology, 2020, 235: 116219. |
30 | McKinstry C, Cathcart R J, Cussen E J, et al. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals[J]. Chemical Engineering Journal, 2016, 285: 718-725. |
31 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
Feng A H, Yu Y, Yu Y, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
32 | 孙静, 董一霖, 李法齐, 等. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
Sun J, Dong Y L, Li F Q, et al. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315. | |
33 | Primo A, Garcia H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. |
34 | Dipendu S, Deng S G. Adsorption equilibrium, kinetics, and enthalpy of N2O on zeolite 4A and 13X[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3312-3317. |
35 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
36 | Groen J C, Pérez-Ramírez J, Zhu W D. Adsorption of nitrous oxide on silicalite-1[J]. Journal of Chemical & Engineering Data, 2002, 47(3): 587-589. |
37 | Inglezakis V J, Loizidou M M, Grigoropoulou H P. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility[J]. Journal of Colloid and Interface Science, 2004, 275(2): 570-576. |
38 | Siperstein F R, Myers A L. Mixed-gas adsorption[J]. AIChE Journal, 2001, 47(5): 1141-1159. |
39 | Sethia G, Somani R S, Bajaj H. Sorption of methane and nitrogen on cesium exchanged zeolite-X: structure, cation position and adsorption relationship[J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6807-6814. |
40 | Hu S F, Song G Q, Xue D, et al. Influence of alkalinity on the synthesis of hierarchical LTA zeolite by using bridged polysilsesquioxane[J]. RSC Advances, 2019, 9(5): 2551-2558. |
41 | Lin G, Zhuang Q, Cui Q, et al. Synthesis and adsorption property of zeolite FAU/LTA from lithium slag with utilization of mother liquid[J]. Chinese Journal of Chemical Engineering, 2015, 23(11): 1768-1773. |
42 | Huang H L, Zhang W J, Liu D H, et al. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chemical Engineering Science, 2011, 66(23): 6297-6305. |
43 | Wang L, Zhang F F, Yang J F, et al. The efficient separation of N2O/CO2 using unsaturated Fe2+ sites in MIL-100Fe[J]. Chemical Communications, 2021, 57(54): 6636-6639. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[10] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[11] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[14] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[15] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||