CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1457-1473.DOI: 10.11949/0438-1157.20221461
• Reviews and monographs • Previous Articles Next Articles
Zijian WANG(), Ming KE(), Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN
Received:
2022-11-08
Revised:
2023-03-22
Online:
2023-06-02
Published:
2023-04-05
Contact:
Ming KE
王子健(), 柯明(), 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐
通讯作者:
柯明
作者简介:
王子健(1995—),男,博士研究生, 757496137@qq.com
基金资助:
CLC Number:
Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve[J]. CIESC Journal, 2023, 74(4): 1457-1473.
王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Crystallization of MFI nanosheets: (a) Structure model for the single MFI nanosheet (Surfactant molecules are aligned along the straight channel of MFI framework. Two quaternary ammonium groups (indicated as a red sphere) are located at the channel intersections. One is inside the framework, and the other is at the pore mouth of the external surface); (b) Many MFI nanosheets form either multilamellar stacking along the b-axis; (c) A random assembly of unilamellar structure [31]
Fig.8 Formation mechanism of the single-crystalline hierarchical plate-like ZSM-5 crystal for zeolite syntheses in one step (at 170℃) or in two steps (at 80℃ and then at 170℃)[63]
Fig.9 Average product selectivity (a) and catalyst lifetime (b) for MTP reactions over the ZSM-5 catalysts [glucose/SiO2 is Z5-A: 0, Z5-B: 0.12, Z5-C: 0.24; Z5-C loading P is Z5-CP: 1.5%(mass), Z5-CP2: 2.0%(mass), Z5-CP3: 3.0%(mass)][76]
Fig. 11 Catalytic conversion of methanol (a); Product selectivity (LPG, C5+ and aromatics) (b); TG profiles (c) and GC-MS chromatograms (d) of organic species retained in the spent catalysts of U-ZSM-5-0.03 and SH-ZSM-5 after the methanol conversion[81]
Fig. 12 n-Heptane cracking performance of ZSM-5 nanosheets with different b-axis thicknesses: Conversion of n-heptane as a function of time on stream (a); TG analysis of coke content over spent ZSM-5 nanosheets (b)[86]
1 | Argauer R J, Landolt G R. Crystalline zeolite ZSM-5 and method of preparing the same: US3702886[P]. 1972-11-14. |
2 | Flanigen E M, Bennett J M, Grose R W, et al. Silicalite, a new hydrophobic crystalline silica molecular sieve[J]. Nature, 1978, 271(5645): 512-516. |
3 | 周彦妮. ZSM-5分子筛骨架铝分布及孔结构性质的调变[D]. 北京: 中国石油大学(北京), 2020. |
Zhou Y N. Tuning the framework aluminum distribution and pore structure of ZSM-5 zeolite[D]. Beijing: China University of Petroleum, 2020. | |
4 | Xing S Y, Liu K K, Wang T F, et al. Elucidation of the mechanism and structure-reactivity relationship in zeolite catalyzed alkylation of benzene with propylene[J]. Catalysis Science & Technology, 2021, 11(8): 2792-2804. |
5 | 叶娜, 孙琳, 王刃, 等. 纳米ZSM-5沸石上丁烯的芳构化反应[J]. 化工学报, 2007, 58(4): 913-918. |
Ye N, Sun L, Wang R, et al. Aromatization of butylenes over nano-sized ZSM-5 zeolite[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 913-918. | |
6 | 刘冬梅, 翟玉春, 马健, 等. Na2CO3处理法制备微介孔ZSM-5沸石及其催化硫醚化性能[J]. 石油学报(石油加工), 2015, 31(1): 38-44. |
Liu D M, Zhai Y C, Ma J, et al. Preparation of micro-mesoporous ZSM-5 modified by Na2CO3 and its catalytic performance for sulfur etherification[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 38-44. | |
7 | 张立东, 高俊华, 胡津仙, 等. Fe/ZSM-5的制备及其催化甲苯/甲醇烷基化反应行为[J]. 化工进展, 2009, 28(8): 1360-1364, 1381. |
Zhang L D, Gao J H, Hu J X, et al. Preparation of Fe/ZSM-5 and catalytic behavior for toluene alkylation with methanol[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1360-1364, 1381. | |
8 | 王日升, 彭鹏, 李婷婷, 等. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858. |
Wang R S, Peng P, Li T T, et al. Synthesis and application of hierarchical zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858. | |
9 | Qiao K, Shi X, Zhou F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
10 | Tang X M, Chen W, Dong W J, et al. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: a theoretical investigation[J]. Catalysis Today, 2022, 405/406: 101-110. |
11 | Dessau R M, Valyocsik E W, Goeke N H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7): 776-779. |
12 | Danilina N, Krumeich F, Castelanelli S A, et al. Where are the active sites in zeolites? Origin of aluminum zoning in ZSM-5[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6640-6645. |
13 | Zhang Y J, Che S N. One-pot synthesis and formation mechanism of hollow ZSM-5[J]. Chemistry, 2019, 25(24): 6196-6202. |
14 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
15 | Yan Z G, Chen D, Huang L, et al. A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2022, 337: 111926. |
16 | Kore R, Srivastava R, Satpati B. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents[J]. Chemistry-A European Journal, 2014, 20(36): 11511-11521. |
17 | Zhan E S, Xiong Z P, Zhou Y, et al. Perpendicular intergrowth ZSM-5 plates with shortened 10-MR pores[J]. Chinese Journal of Catalysis, 2020, 41(7): 1132-1139. |
18 | Ma Y, Tang X M, Hu J Y, et al. Design of a small organic template for the synthesis of self-pillared pentasil zeolite nanosheets[J]. Journal of the American Chemical Society, 2022, 144(14): 6270-6277. |
19 | Zhang X Y, Liu D X, Xu D D, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science, 2012, 336(6089): 1684-1687. |
20 | Ruiz-Zamora E, de la Rosa J R, Maldonado C S, et al. Siliceous self-pillared pentasil (SPP) zeolite with incorporated phosphorus groups in catalytic formation of butadiene by dehydra-decyclization of tetrahydrofuran: study of catalyst stability by NMR and REDOR analysis[J]. Applied Catalysis A: General, 2022, 640: 118648. |
21 | Mabande G T P, Ghosh S, Lai Z P, et al. Preparation of b-oriented MFI films on porous stainless steel substrates[J]. Industrial & Engineering Chemistry Research, 2005, 44(24): 9086-9095. |
22 | Choi J, Ghosh S, Lai Z P, et al. Uniformly a-oriented MFI zeolite films by secondary growth[J]. Angewandte Chemie, 2006, 45(7): 1154-1158. |
23 | Liu Y, Li Y S, Yang W S. Effective manipulation of the microstructure of zeolite film by hydrothermal pretreatment[J]. Journal of Materials Science, 2011, 46(11): 3942-3951. |
24 | Rangnekar N, Shete M, Agrawal K V, et al. 2D zeolite coatings: Langmuir-Schaefer deposition of 3 nm thick MFI zeolite nanosheets[J]. Angewandte Chemie, 2015, 54(22): 6571-6575. |
25 | Liu Y, Qiang W L, Ji T T, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Science Advances, 2020, 6(7): eaay5993. |
26 | Li S, Wang X, Beving D, et al. Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film[J]. Journal of the American Chemical Society, 2004, 126(13): 4122-4123. |
27 | Ji M L, Liu G Z, Chen C, et al. Synthesis of highly b-oriented ZSM-5 membrane on a rough surface modified simply with TiO2 by in situ crystallization[J]. Microporous and Mesoporous Materials, 2012, 155: 117-123. |
28 | Di J C, Zhang C, Yan W F, et al. Direct in situ crystallization of highly oriented silicalite-1 thin films on a surface sol-gel process modified substrate[J]. Microporous and Mesoporous Materials, 2011, 145(1/2/3): 104-107. |
29 | Lai Z, Tsapatsis M, Nicolich J. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers[J]. Advanced Functional Materials, 2004, 14(7): 716-729. |
30 | Bonilla G, Díaz I, Tsapatsis M, et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents[J]. Chemistry of Materials, 2004, 16(26): 5697-5705. |
31 | Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
32 | Na K, Park W, Seo Y, et al. Disordered assembly of MFI zeolite nanosheets with a large volume of intersheet mesopores[J]. Chemistry of Materials, 2011, 23(5): 1273-1279. |
33 | Park W, Yu D, Na K, et al. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets[J]. Chemistry of Materials, 2011, 23(23): 5131-5137. |
34 | Singh B K, Xu D D, Han L, et al. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant[J]. Chemistry of Materials, 2014, 26(24): 7183-7188. |
35 | Chang A, Hsiao H M, Chen T H, et al. Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement[J]. Chemical Communications, 2016, 52(80): 11939-11942. |
36 | Shen X F, Mao W T, Ma Y H, et al. Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group[J]. Chemistry, 2018, 24(34): 8615-8623. |
37 | Na K, Choi M, Park W, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177. |
38 | Emdadi L, Wu Y Q, Zhu G H, et al. Dual template synthesis of meso- and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions[J]. Chemistry of Materials, 2014, 26(3): 1345-1355. |
39 | Emdadi L, Liu D X. One-step dual template synthesis of hybrid lamellar-bulk MFI zeolite[J]. Journal of Materials Chemistry A, 2014, 2(33): 13388-13397. |
40 | Xu D D, Ma Y H, Jing Z F, et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communications, 2014, 5(1): 1-9. |
41 | Xu D D, Jing Z F, Cao F L, et al. Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets[J]. Chemistry of Materials, 2014, 26(15): 4612-4619. |
42 | Shan Z C, Wang H, Meng X J, et al. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chemical Communications, 2011, 47(3): 1048-1050. |
43 | 于幸. 形貌可控的MFI和CHA分子筛合成及其催化性能研究[D]. 上海: 上海大学, 2019. |
Yu X. Morphogy controllable synthesis of MFI and CHA zeolites and their catalytic performance[D]. Shanghai: Shanghai University, 2019. | |
44 | Ali Qureshi B, Lan X C, Arslan M T, et al. Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein[J]. Industrial & Engineering Chemistry Research, 2019, 58(28): 12611-12622. |
45 | Liu Y, Zhou X Z, Pang X M, et al. Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length[J]. ChemCatChem, 2013, 5(6): 1517-1523. |
46 | Saito A, Foley H C. High-resolution nitrogen and argon adsorption on ZSM-5 zeolites: effects of cation exchange and SiAl[J]. Microporous Materials, 1995, 3(4/5): 543-556. |
47 | Llewellyn P L, Coulomb J P, Grillet Y, et al. Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction (2): Nitrogen and carbon monoxide[J]. Langmuir, 1993, 9(7): 1852-1856. |
48 | 刘艳. 若干重要的工业沸石分子筛晶体形貌调控及催化性能[D]. 杭州: 浙江大学, 2014. |
Liu Y. The morphology control of several important industrial zeolite crystals and their catalytic properties[D]. Hangzhou: Zhejiang University, 2014. | |
49 | Ali B, Lan X C, Arslan M T, et al. Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 127-136. |
50 | 李国栋, 宋宇, 张兰兰, 等. 不同硅铝比薄片状ZSM-5分子筛催化甲醇转化制丙烯[C]//第18届全国分子筛学术大会. 上海, 2015. |
Li G D, Song Y, Zhang L L, et al. Catalytic conversion of methanol to propylene over thin ZSM-5 molecular sieves with different silicon aluminum ratios[C]// The 18th National Molecular Sieve Academic Conference. Shanghai, 2015. | |
51 | Dose M E, Zhang K, Thompson J A, et al. Effect of crystal size on framework defects and water uptake in fluoride mediated silicalite-1[J]. Chemistry of Materials, 2014, 26(15): 4368-4376. |
52 | Zhang L L, Song Y, Li G D, et al. F-assisted synthesis of a hierarchical ZSM-5 zeolite for methanol to propylene reaction: a b-oriented thinner dimensional morphology[J]. RSC Advances, 2015, 5(75): 61354-61363. |
53 | Dai W J, Kouvatas C, Tai W S, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
54 | Wu D, Yu X, Chen X Q, et al. Morphology-controlled synthesis of H-type MFI zeolites with unique stacked structures through a one-pot solvent-free strategy[J]. ChemSusChem, 2019, 12(16): 3871-3877. |
55 | Liu Z, Liu L J, Song H, et al. Hierarchical SAPO-11 preparation in the presence of glucose[J]. Materials Letters, 2015, 154: 116-119. |
56 | Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732. |
57 | Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers[J]. Angewandte Chemie, 2012, 51(14): 3345-3349. |
58 | Feng R, Yan X L, Hu X Y, et al. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 302: 110246. |
59 | Jin L J, Xie T, Liu S B, et al. Controllable synthesis of chainlike hierarchical ZSM-5 templated by sucrose and its catalytic performance[J]. Catalysis Communications, 2016, 75: 32-36. |
60 | 肖霞. 多级孔纳米ZSM-5分子筛聚集体的制备调控及其正庚烷催化裂解性能研究[D]. 北京: 中国石油大学(北京), 2017. |
Xiao X. Study on the preparation and regulation of nano ZSM-5 zeolite aggregates with hierarchical porosity and their catalytic performances for the cracking of n-heptane[D]. Beijing: China University of Petroleum, 2017. | |
61 | Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture[J]. Journal of the American Chemical Society, 2013, 135(17): 6608-6617. |
62 | Chen X X, Yan W F, Cao X J, et al. Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis[J]. Microporous and Mesoporous Materials, 2009, 119(1/2/3): 217-222. |
63 | Shang Z Y, Chen Y, Zhang L J, et al. Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short b-axis length for catalyzing MTO reactions[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1456-1466. |
64 | Shang Z Y, Chen Y, Zhang L J, et al. Plate-like MFI crystal growth achieved by guanidine compounds[J]. Inorganic Chemistry Frontiers, 2022, 9(9): 2097-2103. |
65 | Ye J H, Bai L, Liu B Y, et al. Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7094-7106. |
66 | Zhang F, Liu Y, Sun Q, et al. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10—20 nm thickness and partially blocked acidic sites[J]. Chemical Communications, 2017, 53(36): 4942-4945. |
67 | Ma Y H, Wang N, Qian W Z, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Advances, 2016, 6(84): 81198-81202. |
68 | Ma Y H, Cai D L, Li Y R, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801. |
69 | Yang J H, Gong K, Miao D Y, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48. |
70 | Arslan M T, Ali Qureshi B, Ali Gilani S Z, et al. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene[J]. ACS Catalysis, 2019, 9(3): 2203-2212. |
71 | Wu X Q, Xu S T, Wei Y X, et al. Evolution of C—C bond formation in the methanol-to-olefins process: from direct coupling to autocatalysis[J]. ACS Catalysis, 2018, 8(8): 7356-7361. |
72 | Hemelsoet K, van der Mynsbrugge J, De Wispelaere K, et al. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545. |
73 | Hu S, Shan J, Zhang Q, et al. Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite[J]. Applied Catalysis A: General, 2012, 445/446: 215-220. |
74 | Svelle S, Olsbye U, Lillerud K P, et al. Diphenylmethane-mediated transmethylation of methylbenzenes over H-zeolites[J]. Journal of the American Chemical Society, 2006, 128(17): 5618-5619. |
75 | Bjørgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207. |
76 | Feng R, Yan X L, Hu X Y, et al. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction[J]. Applied Catalysis A: General, 2020, 594: 117464. |
77 | Wang N, Sun W J, Hou Y L, et al. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons[J]. Journal of Catalysis, 2018, 360: 89-96. |
78 | Wu L L, Magusin P C M M, Degirmenci V, et al. Acidic properties of nanolayered ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2014, 189: 144-157. |
79 | Meng L Q, Zhu X C, Mezari B, et al. On the role of acidity in bulk and nanosheet [T]MFI (T=Al3+, Ga3+, Fe3+, B3+) zeolites in the methanol-to-hydrocarbons reaction[J]. ChemCatChem, 2017, 9(20): 3942-3954. |
80 | 郭春垒, 于海斌, 王银斌, 等. 甲醇制汽油催化剂研究进展[J]. 化工进展, 2013, 32(S1): 115-121. |
Guo C L, Yu H B, Wang Y B, et al. Development of methanol to gasoline catalyst[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 115-121. | |
81 | Liu Z Y, Wu D, Ren S, et al. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity[J]. ChemCatChem, 2016, 8(21): 3317-3322. |
82 | 魏晓丽, 成晓洁, 谢朝钢. 正庚烷在分子筛催化剂上催化裂解的链引发反应[J]. 石油学报(石油加工), 2013, 29(1): 13-19. |
Wei X L, Cheng X J, Xie C G. Initiation of chain reaction in catalytic pyrolysis of n-heptane over zeolite catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(1): 13-19. | |
83 | Hao J, Cheng D G, Chen F Q, et al. n-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: effect of nanosheet thickness[J]. Microporous and Mesoporous Materials, 2021, 310: 110647. |
84 | Xiao X, Zhang Y Y, Jiang G Y, et al. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite[J]. Chemical Communications, 2016, 52(65): 10068-10071. |
85 | Zhang J X, Ren L M, Zhou A J, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226. |
86 | Guisnet M, Gnep N S, Morin S. Mechanisms of xylene isomerization over acidic solid catalysts[J]. Microporous and Mesoporous Materials, 2000, 35/36: 47-59. |
87 | Cortes A, Corma A. The mechanism of catalytic isomerization of xylenes: kinetic and isotopic studies[J]. Journal of Catalysis, 1978, 51(3): 338-344. |
88 | Zheng S R, Jentys A, Lercher J A. Xylene isomerization with surface-modified HZSM-5 zeolite catalysts: an in situ IR study[J]. Journal of Catalysis, 2006, 241(2): 304-311. |
89 | Degnan T F. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003, 216(1/2): 32-46. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[14] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[15] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||