CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1474-1488.DOI: 10.11949/0438-1157.20221487
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiyuan LI1(), Jinwang LI1,2(), Liuwei ZHOU1
Received:
2022-11-15
Revised:
2023-03-09
Online:
2023-06-02
Published:
2023-04-05
Contact:
Jinwang LI
通讯作者:
李金旺
作者简介:
李纪元(1997—),男,硕士研究生,1073172970@qq.com
基金资助:
CLC Number:
Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures[J]. CIESC Journal, 2023, 74(4): 1474-1488.
李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
Add to citation manager EndNote|Ris|BibTeX
编号 | 结构 | 扰流柱截面积/mm2 | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|
1 | 无扰柱 | 0 | 224.0 | 705.9 | |
2 | 菱柱 | 3.1 | 186.3 | 1015.9 | |
3 | 圆柱 | 3.1 | 186.3 | 1014.3 | |
4 | 水滴柱 | 3.1 | 186.3 | 1015.1 |
Table 1 Comparison of flow channel parameters of spoiler structure
编号 | 结构 | 扰流柱截面积/mm2 | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|
1 | 无扰柱 | 0 | 224.0 | 705.9 | |
2 | 菱柱 | 3.1 | 186.3 | 1015.9 | |
3 | 圆柱 | 3.1 | 186.3 | 1014.3 | |
4 | 水滴柱 | 3.1 | 186.3 | 1015.1 |
编号 | 结构 | 内部流速/(m/s) | 当量直径/m | Reynolds数 | Nusselt数 | 对流传热系数/(W/(m2·K)) |
---|---|---|---|---|---|---|
1 | 无扰流柱 | 0.29 | 0.0048 | 1758.01 | 8.84 | 1137.48 |
2 | 有扰流柱(分离段) | 0.29~0.58 | 0.0017~0.003 | 1098.76~1255.72 | 1.30~3.24 | 267.01~1168.72 |
3 | 有扰流柱(汇合段) | 0.29~0.58 | 0.003~0.0048 | 1758.01~2197.51 | 8.84~13.24 | 1137.48~2725.77 |
Table 2 Heat transfer capacity of cold plate
编号 | 结构 | 内部流速/(m/s) | 当量直径/m | Reynolds数 | Nusselt数 | 对流传热系数/(W/(m2·K)) |
---|---|---|---|---|---|---|
1 | 无扰流柱 | 0.29 | 0.0048 | 1758.01 | 8.84 | 1137.48 |
2 | 有扰流柱(分离段) | 0.29~0.58 | 0.0017~0.003 | 1098.76~1255.72 | 1.30~3.24 | 267.01~1168.72 |
3 | 有扰流柱(汇合段) | 0.29~0.58 | 0.003~0.0048 | 1758.01~2197.51 | 8.84~13.24 | 1137.48~2725.77 |
结构 | 温升值/K | 热源温度/K | 温升降低比例/% |
---|---|---|---|
无扰流柱 | 6.14 | 306.14 | - |
菱柱 | 4.55 | 304.55 | 25.90 |
圆柱 | 3.86 | 303.86 | 37.13 |
水滴柱 | 3.90 | 303.90 | 36.48 |
Table 3 Temperature rise and proportion of four flow channel structures under the same energy consumption
结构 | 温升值/K | 热源温度/K | 温升降低比例/% |
---|---|---|---|
无扰流柱 | 6.14 | 306.14 | - |
菱柱 | 4.55 | 304.55 | 25.90 |
圆柱 | 3.86 | 303.86 | 37.13 |
水滴柱 | 3.90 | 303.90 | 36.48 |
编号 | 水滴柱长宽比 | 水滴柱总长度/mm | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|
1 | 1.5∶1 | 3 | 181.15 | 1038.05 | |
2 | 2∶1 | 4 | 169.15 | 1099.42 | |
3 | 2.5∶1 | 5 | 157.15 | 1165.78 | |
4 | 3∶1 | 6 | 145.15 | 1234.31 |
Table 4 Comparison of flow channel parameters of droplet column turbulence structure
编号 | 水滴柱长宽比 | 水滴柱总长度/mm | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|
1 | 1.5∶1 | 3 | 181.15 | 1038.05 | |
2 | 2∶1 | 4 | 169.15 | 1099.42 | |
3 | 2.5∶1 | 5 | 157.15 | 1165.78 | |
4 | 3∶1 | 6 | 145.15 | 1234.31 |
流道类型 | 温升值/K | 热源温度/K | 温升降低比例/% | |
---|---|---|---|---|
3 mm水滴柱流道 | 3.91 | 303.91 | 36.32 | |
4 mm水滴柱流道 | 3.81 | 303.81 | 37.95 | |
5 mm水滴柱流道 | 3.77 | 303.77 | 38.60 | |
6 mm水滴柱流道 | 3.81 | 303.81 | 37.95 |
Table 5 Temperature rise and proportion of water droplet column structure channel under the same ideal energy consumption
流道类型 | 温升值/K | 热源温度/K | 温升降低比例/% | |
---|---|---|---|---|
3 mm水滴柱流道 | 3.91 | 303.91 | 36.32 | |
4 mm水滴柱流道 | 3.81 | 303.81 | 37.95 | |
5 mm水滴柱流道 | 3.77 | 303.77 | 38.60 | |
6 mm水滴柱流道 | 3.81 | 303.81 | 37.95 |
编号 | 扰流柱排数 | 扰流柱宽度/mm | 扰流柱数量/个 | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|---|
1 | 2 | 3.0 | 16 | 942.90 | 2081.71 | |
2 | 3 | 2.0 | 36 | 942.90 | 2901.63 | |
3 | 4 | 1.5 | 64 | 942.90 | 3721.57 | |
4 | 6 | 1.0 | 144 | 942.90 | 5361.39 |
Table 6 Comparison of density parameters of flow passage disturbance column
编号 | 扰流柱排数 | 扰流柱宽度/mm | 扰流柱数量/个 | 流道底面积/mm2 | 流道侧面积/mm2 | 流道结构示意图 |
---|---|---|---|---|---|---|
1 | 2 | 3.0 | 16 | 942.90 | 2081.71 | |
2 | 3 | 2.0 | 36 | 942.90 | 2901.63 | |
3 | 4 | 1.5 | 64 | 942.90 | 3721.57 | |
4 | 6 | 1.0 | 144 | 942.90 | 5361.39 |
19 | Qi W L, Zhao L, Wang W R, et al. Research progress of high heat flux electronic devices liquid cooling technology[J]. Science Technology and Engineering, 2022, 22(11): 4261-4270. |
20 | 陆冬平. 高功率电子装备的热能回收与综合利用技术探讨[J]. 中国电子科学研究院学报, 2019, 14(3): 312-320. |
Lu D P. Discussion of the recovery and integrated utilization of thermal energy of high power electronic equipment[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14(3): 312-320. | |
21 | 余小玲, 张荣婷, 冯全科. 大功率模块用新型冷板的传热性能研究[J]. 电力电子技术, 2009, 43(12): 79-81. |
Yu X L, Zhang R T, Feng Q K. Heat transfer research on a novel cold plate used for high power electronics module[J]. Power Electronics, 2009, 43(12): 79-81. | |
22 | 李健, 萧维智, 葛鹰. 液冷冷板散热翅片形状与排布研究[J]. 流体机械, 2020, 48(8): 6-10. |
Li J, Xiao W Z, Ge Y. Study of radiating fins of liquid-cooled cold-plate with different shapes and arrangement[J]. Fluid Machinery, 2020, 48(8): 6-10. | |
23 | 张伟霞. 高功率芯片的新型水冷散热板结构仿真分析[J]. 机械工程与自动化, 2019(6): 113-115. |
Zhang W X. Simulation analysis of novel water-cooled heat sink structure applied to high power chip[J]. Mechanical Engineering & Automation, 2019(6): 113-115. | |
24 | 陈程, 朱永明, 谢斌, 等. 紧凑型液冷散热器的实验研究[J]. 工程热物理学报, 2016, 37(9): 1956-1960. |
Chen C, Zhu Y M, Xie B, et al. Experimental study of a water-stirring radiator[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1956-1960. | |
25 | 王宏标. 间接液冷散热水冷板的数值模拟与优化设计[D]. 济南: 山东大学, 2021. |
Wang H B. Numerical simulation and optimization design of cooling plate in indirect liquid cooling system[D]. Jinan: Shandong University, 2021. | |
26 | 钱吉裕, 平丽浩, 陈陶菲, 等. 一种新型阵列射流冲击冷板的实验研究[J]. 工程热物理学报, 2008, 29(8): 1357-1359. |
Qian J Y, Ping L H, Chen T F, et al. Experimental study on a new cold plate with confined array jets[J]. Journal of Engineering Thermophysics, 2008, 29(8): 1357-1359. | |
27 | 苗苗, 王硕, 李雪冬. S形水道水冷板传热特性研究[J]. 铁道机车与动车, 2013(12): 16-18, 42. |
Miao M, Wang S, Li X D. Study on heat transfer characteristics of water cooling plate in S-shaped waterway[J]. Railway Locomotive and Motor Car, 2013(12): 16-18, 42. | |
28 | 果晶晶. 空间电池组液冷效果的数值模拟研究[J]. 价值工程, 2022, 41(19): 62-64. |
Guo J J. Numerical simulation study on cooling effect of the space battery pack[J]. Value Engineering, 2022, 41(19): 62-64. | |
29 | 余莉, 蒋彦龙, 李萍. 电子设备用冷板散热特性的二维数值模拟[J]. 南京航空航天大学学报, 2006, 38(4): 419-422. |
Yu L, Jiang Y L, Li P. 2-D numerical simulation on cooling characteristics of ventilated rib in electronic equipments[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4): 419-422. | |
30 | 孙世梅, 张红. 热管换热器流动与传热的CFD模拟及试验[J]. 南京工业大学学报(自然科学版), 2004, 26(2): 62-66. |
Sun S M, Zhang H. Analysis of CFD simulation with experiment of heat transfer and pressure drop for heat pipe heat exchanger[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2004, 26(2): 62-66. | |
31 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. Int. Chem. Eng., 1976, 16: 359-368. |
1 | 端点星. 半导体芯片工艺节点演变路径分析[J]. 集成电路应用, 2017, 34(10): 53-60. |
Duan D X. Analysis of process roadmap on semiconductor chip technology[J]. Application of IC, 2017, 34(10): 53-60. | |
2 | Janicki M, Napieralski A. Modelling electronic circuit radiation cooling using analytical thermal model[J]. Microelectronics Journal, 2000, 31(9/10): 781-785. |
3 | 胡志勇. 当今电子设备冷却技术的发展趋势[J]. 电子机械工程, 1999, 15(1): 2-5. |
Hu Z Y. Development trends of cooling technique for today's electronic equipment[J]. Electro-Mechanical Engineering, 1999, 15(1): 2-5. | |
4 | 刘焕玲, 邵晓东, 贾建援, 等. 计算机芯片的散热研究[J]. 电子机械工程, 2005, 21(3): 15-17, 21. |
Liu H L, Shao X D, Jia J Y, et al. Research on the heat sink for computer chip[J]. Electro-Mechanical Engineering, 2005, 21(3): 15-17, 21. | |
5 | Brighenti F, Kamaruzaman N, Brandner J J. Investigation of self-similar heat sinks for liquid cooled electronics[J]. Applied Thermal Engineering, 2013, 59(1/2): 725-732. |
6 | 向华平, 李金旺. 2种电子设备低冰点冷却液对比研究[J]. 机械与电子, 2019, 37(10): 3-6. |
Xiang H P, Li J W. Comparative study of two low freezing point cooling fluids for electronic equipment cooling[J]. Machinery & Electronics, 2019, 37(10): 3-6. | |
7 | 张甫仁, 鲁福, 吴博, 等. 内部结构组合形式优化对冷板冷却性能的影响[J]. 汽车安全与节能学报, 2022, 13(2): 368-377. |
Zhang F R, Lu F, Wu B, et al. Effect of internal structure combination optimization on cooling performance of cold plate[J]. Journal of Automotive Safety and Energy, 2022, 13(2): 368-377. | |
8 | 陆宁香, 李金旺, 杨茂飞. 变孔隙毛细芯平板热管性能[J]. 化工进展, 2022, 41(12): 6235-6244. |
Lu N X, Li J W, Yang M F. Performance of flat plate heat pipes with variable pore capillary wicks[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6235-6244. | |
9 | 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2023, 42(2): 692-698. |
Yang M F, Li J W, Zhou L W. Heat transfer performance of hydrophilic modified ultra-thin flat heat pipe[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 692-698. | |
10 | Zhang H N, Shao S Q, Xu H B, et al. Free cooling of data centers: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 171-182. |
11 | 施勇, 许志慧, 柳博文, 等. 机房服务器散热技术应用研究进展[J]. 科技与创新, 2021(14): 174-176. |
Shi Y, Xu Z H, Liu B W, et al. Research progress on application of heat dissipation technology for server in computer room[J]. Science and Technology & Innovation, 2021(14): 174-176. | |
12 | 王飞. 自然冷却技术在机房空调中的应用现状[J]. 制冷与空调, 2018, 18(10): 1-7, 30. |
Wang F. Application status of free cooling technology to air-conditioning in computer room[J]. Refrigeration and Air-Conditioning, 2018, 18(10): 1-7, 30. | |
13 | 朱永忠. 数据中心制冷技术的应用及发展[J]. 工程建设标准化, 2015(8): 62-66. |
Zhu Y Z. The application and development of data center refrigeration technology[J]. Standardization of Engineering Construction, 2015(8): 62-66. | |
14 | 江峰, 左隽逸. 基于Icepak的水冷板结构优化设计[J]. 船电技术, 2020, 40(2): 31-33, 43. |
Jiang F, Zuo J Y. Structure optimization design of water-cooled plate based on icepak[J]. Marine Electric & Electronic Engineering, 2020, 40(2): 31-33, 43. | |
32 | 汪作心. 典型旋涡结构对壁面换热效果的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
Wang Z X. Study on the effect of typical vortex struture on wall heat transfer[D]. Harbin: Harbin Institute of Technology, 2017. | |
15 | 钱吉裕, 李金旺, 战栋栋. 热管冷板冷却性能实验研究[J]. 电子机械工程, 2014, 30(3): 10-11, 64. |
Qian J Y, Li J W, Zhan D D. Experiment study on cooling performance of heat pipe cold plate[J]. Electro-Mechanical Engineering, 2014, 30(3): 10-11, 64. | |
16 | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023,74(1): 60-73. |
Wei J J, Liu L, Yang X P. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023,74(1): 60-73. | |
17 | 张平, 宣益民, 李强. 界面接触热阻的研究进展[J]. 化工学报, 2012, 63(2): 335-349. |
Zhang P, Xuan Y M, Li Q. Development on thermal contact resistance[J]. CIESC Journal, 2012, 63(2): 335-349. | |
18 | 贲少愚, 李金旺, 杨冬梅. 固态组件和冷板间的接触热阻实验研究[J]. 电子机械工程, 2014, 30(6): 12-14. |
Ben S Y, Li J W, Yang D M. Experimental study on thermal contact resistance between solid state module and cold plate[J]. Electro-Mechanical Engineering, 2014, 30(6): 12-14. | |
19 | 齐文亮, 赵亮, 王婉人, 等. 高热通量电子设备液冷技术研究进展[J]. 科学技术与工程, 2022, 22(11): 4261-4270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||