CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2611-2623.DOI: 10.11949/0438-1157.20230254
• Energy and environmental engineering • Previous Articles Next Articles
Xiaowen ZHOU1,3(), Jie DU2,3, Zhanguo ZHANG1,3(), Guangwen XU1,3()
Received:
2023-03-17
Revised:
2023-06-03
Online:
2023-07-27
Published:
2023-06-05
Contact:
Zhanguo ZHANG, Guangwen XU
周小文1,3(), 杜杰2,3, 张战国1,3(), 许光文1,3()
通讯作者:
张战国,许光文
作者简介:
周小文(1998—),女,硕士研究生,603901789@qq.com
基金资助:
CLC Number:
Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier[J]. CIESC Journal, 2023, 74(6): 2611-2623.
周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623.
Add to citation manager EndNote|Ris|BibTeX
Fe2O3质量分数/% | 比表面积/(m2/g) |
---|---|
0 | 131.9 |
10 | 118.2 |
20 | 104.7 |
40 | 67.8 |
60 | 47.7 |
80 | 17.4 |
Table 1 BET surface area of Fe2O3-Al2O3 oxygen carriers with different Fe2O3 contents
Fe2O3质量分数/% | 比表面积/(m2/g) |
---|---|
0 | 131.9 |
10 | 118.2 |
20 | 104.7 |
40 | 67.8 |
60 | 47.7 |
80 | 17.4 |
Fe2O3质量分数/% | 晶粒尺寸/nm |
---|---|
10 | <5 |
20 | 20 |
40 | 21 |
60 | 21 |
80 | 21 |
Table 2 Crystallite size of Fe2O3 in different Fe2O3-Al2O3 oxygen carriers
Fe2O3质量分数/% | 晶粒尺寸/nm |
---|---|
10 | <5 |
20 | 20 |
40 | 21 |
60 | 21 |
80 | 21 |
1 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//ACS Symposium Series. Washington, D.C.: American Chemical Society, 1983: 71-85. |
2 | Rydén M, Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1271-1283. |
3 | 常宏岗. 天然气制氢技术及经济性分析[J]. 石油与天然气化工, 2021, 50(4): 53-57. |
Chang H G. Technical and economic analysis of hydrogen production from natural gas[J]. Chemical Engineering of Oil & Gas, 2021, 50(4): 53-57. | |
4 | Dash S K, Chakraborty S, Elangovan D. A brief review of hydrogen production methods and their challenges[J]. Energies, 2023, 16(3): 1141. |
5 | Kathe M V, Empfield A, Na J, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
6 | de Vos Y, Vamvakeros A, Matras D, et al. Sustainable iron-based oxygen carriers for hydrogen production—real-time operando investigation[J]. International Journal of Greenhouse Gas Control, 2019, 88: 393-402. |
7 | 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. |
Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. | |
8 | Chiesa P, Lozza G, Malandrino A, et al. Three-reactors chemical looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2233-2245. |
9 | Zhang F, Zhu L, Wang Y, et al. Exergy analysis on the process for three reactors chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24322-24332. |
10 | Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93. |
11 | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
12 | Chen S Y, Shi Q L, Xue Z P, et al. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed[J]. International Journal of Hydrogen Energy, 2011, 36(15): 8915-8926. |
13 | 陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. |
Chen G. The kinetics of the gas-based reduction of iron oxide[D]. Dalian: Dalian University of Technology, 2011. | |
14 | 郭培民, 赵沛, 王磊, 等. 氧化铁气基还原过程的气体氧化动力学[J]. 钢铁, 2017, 52(9): 22-26. |
Guo P M, Zhao P, Wang L, et al. Oxidizing kinetics of reducing gas during iron oxide reduction process[J]. Iron & Steel, 2017, 52(9): 22-26. | |
15 | Cho W C, Kim C G, Jeong S U, et al. Activation and reactivity of iron oxides as oxygen carriers for hydrogen production by chemical looping[J]. Industrial & Engineering Chemistry Research, 2015, 54(12): 3091-3100. |
16 | Svoboda K, Slowinski G, Rogut J, et al. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2007, 48(12): 3063-3073. |
17 | Jafarian M, Arjomandi M, Nathan G J. Thermodynamic potential of high temperature chemical looping combustion with molten iron oxide as the oxygen carrier[J]. Chemical Engineering Research and Design, 2017, 120: 69-81. |
18 | 李然家, 沈师孔. 晶格氧用于甲烷氧化制合成气的研究——氧化铁的氧化还原性能[J]. 分子催化, 2001, 15(3): 181-186. |
Li R J, Shen S K. Study on lattice oxygen used in the conversion of methane to synthesis gas—redox performance of Fe2O3 catalyst[J]. Journal of Molecular Catalysis (China), 2001, 15(3): 181-186. | |
19 | Cetinkaya S, Eroglu S. A single-step process for direct reduction of iron oxide to sponge iron by undiluted methane[J]. JOM, 2017, 69(6): 993-998. |
20 | 刘丰. 化学链燃烧中铁基复合载氧体与CO的反应特性及机理研究[D]. 武汉: 华中科技大学, 2020. |
Liu F. Research on the reaction characteristics and mechanism of Fe-based composite oxygen carriers with CO during chemical-looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
21 | 李振山, 鲍金花, 孙宏明, 等.以煤为燃料的化学链燃烧研究进展[J].中国电机工程学报, 2014, 34(29): 5131-5139. |
Li Z S, Bao J H, Sun H M, et al. Research and development of coal-fueled chemical looping combustion[J]. Proceedings of the CSEE, 2014, 34(29): 5131-5139. | |
22 | 马哲. 纳米/多级孔*BEA及MFI型分子筛的合成及性能研究[D]. 长春: 吉林大学, 2022. |
Ma Z. Synthesis and properties of nano/multi-porous *BEA and MFI molecular sieves[D]. Changchun: Jilin University, 2022. | |
23 | 梁皓,宋喜军,尹泽群, 等. 化学链制氢中Fe2O3/LaFeO3载氧体的性能研究[J]. 燃料化学学报, 2013, 41(12): 1512-1519. |
Liang H, Song X J, Yin Z Q, et al. Performance of Fe2O3/LaFeO3 as oxygen carrier in chemical-looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1512-1519. | |
24 | Dai X P, Li R J, Yu C C, et al. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A= La, Nd, Eu) perovskite-type oxides as oxygen storage[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22525-22531. |
25 | 史广全, 孙永升, 李淑菲, 等. 某鲕状赤铁矿深度还原过程研究[J]. 现代矿业, 2009, 25(8): 29-31. |
Shi G Q, Sun Y S, Li S F, et al. Study of deep reduction process of an oolitic hematite[J]. Modern Mining, 2009, 25(8): 29-31. | |
26 | 王凯莉. 柱状催化剂颗粒随机堆积固定床反应器甲烷化过程模拟及床层结构优化[D]. 乌鲁木齐: 新疆大学, 2018. |
Wang K L. Randomly packed methanation fixed-bed numerical simulation of chemical reaction with cylindrical catalysts and bed structure optimization[D]. Urumqi: Xinjiang University, 2018. | |
27 | 李然家, 余长春, 代小平, 等. 以晶格氧为氧源的甲烷部分氧化制合成气[J].催化学报,2002, 23(4): 381-387. |
Li R J, Yu C C, Dai X P, et al. Partial oxidation of methane to synthesis gas using lattice oxygen instead of molecular oxygen[J]. Chinese Journal of Catalysis, 2002, 23(4): 381-387. | |
28 | Manchili S K, Wendel J, Hryha E, et al. Analysis of iron oxide reduction kinetics in the nanometric scale using hydrogen[J]. Nanomaterials, 2020, 10(7): 1276. |
29 | Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Applied Catalysis A: General, 2007, 326(1): 17-27. |
30 | 赵全忠, 赵祯霞, 邹昀, 等. Cu-Ni/γ-Al2O3催化剂上二甘醇催化氨化合成吗啉的本征动力学研究[J]. 高校化学工程学报, 2018, 32(6): 1353-1358. |
Zhao Q Z, Zhao Z X, Zou Y, et al. Intrinsic kinetics of morpholine synthesis via diethylene glycol amination catalyzed by Cu-Ni/γ- Al2O3 [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1353-1358. | |
31 | 郭雪岩, 祝俊, 杨帆. 结构化载氧体颗粒化学链燃烧内扩散影响模拟分析[J].能源研究与信息, 2018, 34(3): 151-158, 181. |
Guo X Y, Zhu J, Yang F. Simulation analysis on the effect of internal diffusion from chemical looping combustion with structured oxygen carrier[J]. Energy Research and Information, 2018, 34(3): 151-158, 181. | |
32 | 刘自松, 魏永刚, 李孔斋, 等. Fe2O3/Al2O3氧载体用于甲烷化学链燃烧:负载量与制备方法的影响[J]. 燃料化学学报, 2013, 41(11):1384-1392. |
Liu Z S, Wei Y G, Li K Z, et al. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion of methane: influence of Fe2O3 loadings and preparation methods[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1384-1392. | |
33 | Kidambi P R, Cleeton J P E, Scott S A, et al. Interaction of iron oxide with alumina in a composite oxygen carrier during the production of hydrogen by chemical looping[J]. Energy & Fuels, 2012, 26(1): 603-617. |
34 | 史奇良, 陈时熠, 薛志鹏, 等. 铁基载氧体化学链制氢特性实验研究[J]. 中国电机工程学报, 2011, 31(S1): 168-174. |
Shi Q L, Chen S Y, Xue Z P, et al. Experimental investigation of chemical looping hydrogen generation using iron oxides as oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(S1): 168-174. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[4] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[7] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[8] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[9] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[10] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[11] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[12] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[13] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[14] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[15] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||