CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2624-2638.DOI: 10.11949/0438-1157.20230121
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2023-02-17
Revised:
2023-03-27
Online:
2023-07-27
Published:
2023-06-05
Contact:
Yong QIAN
通讯作者:
钱勇
作者简介:
卫雪岩(1998—),男,硕士研究生,moiswxy@foxmail.com
基金资助:
CLC Number:
Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder[J]. CIESC Journal, 2023, 74(6): 2624-2638.
卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638.
Add to citation manager EndNote|Ris|BibTeX
α | R2 | α | R2 | α | R2 | α | R2 |
---|---|---|---|---|---|---|---|
0.050 | 0.7910 | 0.275 | 0.9207 | 0.500 | 0.9785 | 0.725 | 0.9562 |
0.075 | 0.9248 | 0.300 | 0.9529 | 0.525 | 0.9766 | 0.750 | 0.8709 |
0.100 | 0.7338 | 0.325 | 0.9671 | 0.550 | 0.9733 | 0.775 | 0.9317 |
0.125 | 0.8453 | 0.350 | 0.9679 | 0.575 | 0.9705 | 0.800 | 0.9008 |
0.150 | 0.9798 | 0.375 | 0.9677 | 0.600 | 0.9652 | 0.825 | 0.8853 |
0.175 | 0.9697 | 0.400 | 0.9698 | 0.625 | 0.9583 | 0.850 | 0.8516 |
0.200 | 0.9433 | 0.425 | 0.9737 | 0.650 | 0.9481 | 0.875 | 0.8249 |
0.225 | 0.9159 | 0.450 | 0.9768 | 0.675 | 0.9287 | 0.900 | 0.6846 |
0.250 | 0.9033 | 0.475 | 0.9783 | 0.700 | 0.8838 |
Table 1 Average correlation coefficients of linear regressions of 6,25,30,40,55 and 120 μm samples
α | R2 | α | R2 | α | R2 | α | R2 |
---|---|---|---|---|---|---|---|
0.050 | 0.7910 | 0.275 | 0.9207 | 0.500 | 0.9785 | 0.725 | 0.9562 |
0.075 | 0.9248 | 0.300 | 0.9529 | 0.525 | 0.9766 | 0.750 | 0.8709 |
0.100 | 0.7338 | 0.325 | 0.9671 | 0.550 | 0.9733 | 0.775 | 0.9317 |
0.125 | 0.8453 | 0.350 | 0.9679 | 0.575 | 0.9705 | 0.800 | 0.9008 |
0.150 | 0.9798 | 0.375 | 0.9677 | 0.600 | 0.9652 | 0.825 | 0.8853 |
0.175 | 0.9697 | 0.400 | 0.9698 | 0.625 | 0.9583 | 0.850 | 0.8516 |
0.200 | 0.9433 | 0.425 | 0.9737 | 0.650 | 0.9481 | 0.875 | 0.8249 |
0.225 | 0.9159 | 0.450 | 0.9768 | 0.675 | 0.9287 | 0.900 | 0.6846 |
0.250 | 0.9033 | 0.475 | 0.9783 | 0.700 | 0.8838 |
1 | Wen D S. Nanofuel as a potential secondary energy carrier[J]. Energy & Environmental Science, 2010, 3(5): 591-600. |
2 | Glassman I. Metal Combustion Processes[M]. New York: American Rocket Society Preprint, 1959. |
3 | Mikhail N L. Reaction of aluminum powders with liquid water and steam[M]//Metal Nanopowders. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014: 163-198. |
4 | Shkolnikov E I, Zhuk A Z, Vlaskin M S. Aluminum as energy carrier: feasibility analysis and current technologies overview[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4611-4623. |
5 | Gromov A A, Il'in A P, Foerter-Barth U, et al. Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders[J]. Combustion, Explosion and Shock Waves, 2006, 42(2): 177-184. |
6 | Beach D B, Rondinone A J, Sumpter B G, et al. Solid-state combustion of metallic nanoparticles: new possibilities for an alternative energy carrier[J]. Journal of Energy Resources Technology, 2007, 129(1): 29-32. |
7 | Bergthorson J M, Goroshin S, Soo M J, et al. Direct combustion of recyclable metal fuels for zero-carbon heat and power[J]. Applied Energy, 2015, 160: 368-382. |
8 | Ning D G, Shoshin Y, van Stiphout M, et al. Temperature and phase transitions of laser-ignited single iron particle[J]. Combustion and Flame, 2022, 236: 111801. |
9 | Gan Y N, Lim Y S, Qiao L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame, 2012, 159(4): 1732-1740. |
10 | 王金云, 王孟军, 杨在林, 等. 金属燃料技术研究进展[C]//第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第三册). 南京, 2020: 206-219. |
Wang J Y, Wang M J, Yang Z L, et al. Research progress on metal fuel technology[C]// Proceedings of the 5th Aerospace Power Joint Conference and the 41st Technical Exchange Meeting of the Third Professional Information Network of China Aerospace (Volume 3). Nanjing, 2020: 206-219. | |
11 | Fang C, Li S F. Experimental research of the effects of superfine aluminum powders on the combustion characteristics of NEPE propellants[J]. Propellants, Explosives, Pyrotechnics, 2002, 27(1): 34-38. |
12 | Julien P, Whiteley S, Goroshin S, et al. Flame structure and particle-combustion regimes in premixed methane-iron-air suspensions[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2431-2438. |
13 | Schiemann M, Fischer P, Bergthorson J. Iron particles as carbon-neutral fuel in spray roasting reactors[C]// Proceedings of the Digital Proceedings of the 8th European Combustion Meeting. 2017. |
14 | Wen D S, Song P X, Zhang K, et al. Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(3): 375-380. |
15 | Mandilas C, Karagiannakis G, Konstandopoulos A G, et al. Study of oxidation and combustion characteristics of iron nanoparticles under idealized and enginelike conditions[J]. Energy & Fuels, 2016, 30(5): 4318-4330. |
16 | 高文静, 金晶, 曾武勇. 纳米铁粉的燃烧动力学模型研究[J]. 科学技术与工程, 2013, 13(33): 9808-9812. |
Gao W J, Jin J, Zeng W Y. Kinetic model study on combustion of nano iron powders[J]. Science Technology and Engineering, 2013, 13(33): 9808-9812. | |
17 | Jiang X, Wang L, Shen F M. Shaft furnace direct reduction technology-midrex and energiron[J]. Advanced Materials Research, 2013, 805/806: 654-659. |
18 | Beckstead M W. Correlating aluminum burning times[J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533-546. |
19 | Wilson R P, Williams F A. Experimental study of the combustion of single aluminum particles in O2/Ar[J]. Symposium (International) on Combustion, 1971, 13(1): 833-845. |
20 | Cassel H M, Liebman I. Combustion of magnesium particles (Ⅰ)[J]. Combustion and Flame, 1962, 6: 153-156. |
21 | Cassel H M, Liebman I. Combustion of magnesium particles (Ⅱ):Ignition temperatures and thermal conductivities of ambient atmospheres[J]. Combustion and Flame, 1963, 7: 79-81. |
22 | Law C, Williams F. Experiments on combustion of magnesium particles in oxygen-inert atmospheres[C]//9th Propulsion Conference. Reston, Virginia: AIAA, 1973: 1195. |
23 | Marion M, Chauveau C, GöKALP I. Studies on the ignition and burning of levitated aluminum particles[J]. Combustion Science and Technology, 1996, 115(4/5/6): 369-390. |
24 | Legrand B, Shafirovich E, Marion M, et al. Ignition and combustion of levitated magnesium particles in carbon dioxide[J]. Symposium (International) on Combustion, 1998, 27(2): 2413-2419. |
25 | Legrand B, Marion M, Chauveau C, et al. Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide[J]. Combustion Science and Technology, 2001, 165(1): 151-174. |
26 | Liebman I, Corry J, Perlee H E. Ignition and incendivity of laser irradiated single micron-size magnesium particles[J]. Combustion Science and Technology, 1972, 5(1): 21-30. |
27 | Wright A, Goroshin S, Higgins A. Combustion time and ignition temperature of iron particles in different oxidizing environments[C]//Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems. 2015. |
28 | 谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报, 2022, 53(2): 193-210. |
Xie Q Y, Chen D D, Ding Y W. Thermogravimetric analysis and its applications in polymer characterization[J]. Acta Polymerica Sinica, 2022, 53(2): 193-210. | |
29 | Cai J M, Xu D, Dong Z J, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2705-2715. |
30 | Sbirrazzuoli N, Vincent L, Mija A, et al. Integral, differential and advanced isoconversional methods[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(2): 219-226. |
31 | Vyazovkin S, Wight C A. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus[J]. The Journal of Physical Chemistry A, 1997, 101(44): 8279-8284. |
32 | Lysenko E N, Surzhikov A P, Zhuravkov S P, et al. The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(2): 1447-1452. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
[15] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||