CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2668-2679.DOI: 10.11949/0438-1157.20230296
• Energy and environmental engineering • Previous Articles Next Articles
Feng ZHU1(), Kailin CHEN1, Xiaofeng HUANG1,2(), Yinzhu BAO1, Wenbin LI1, Jiaxin LIU1, Weiqiang WU1, Wangwei GAO1
Received:
2023-03-27
Revised:
2023-06-05
Online:
2023-07-27
Published:
2023-06-05
Contact:
Xiaofeng HUANG
朱风1(), 陈凯琳1, 黄小凤1,2(), 鲍银珠1, 李文斌1, 刘嘉鑫1, 吴玮强1, 高王伟1
通讯作者:
黄小凤
作者简介:
朱风(1999—),女,硕士研究生,1311019104@qq.com
基金资助:
CLC Number:
Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide[J]. CIESC Journal, 2023, 74(6): 2668-2679.
朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679.
Add to citation manager EndNote|Ris|BibTeX
化学组成/%(质量) | |||||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | Cl | SO3 |
93.278 | 3.006 | 1.864 | 0.245 | 0.093 | 0.38 | 0.093 | 0.502 |
Table 1 Chemical composition of carbide slag
化学组成/%(质量) | |||||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | Cl | SO3 |
93.278 | 3.006 | 1.864 | 0.245 | 0.093 | 0.38 | 0.093 | 0.502 |
样品 | 比表面积/(m2/g) | 总孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
800-6-CS | 1.8618 | 0.007424 | 7.8737 |
800-6-25%KOH-CS | 7.5073 | 0.042714 | 25.6445 |
800-6-25%KOH-CS-COS | 5.5664 | 0.043636 | 19.3113 |
Table 2 Pore structure characteristics of 800-6-CS, 800-6-25%KOH-CS, and 800-6-25%KOH-CS-COS
样品 | 比表面积/(m2/g) | 总孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
800-6-CS | 1.8618 | 0.007424 | 7.8737 |
800-6-25%KOH-CS | 7.5073 | 0.042714 | 25.6445 |
800-6-25%KOH-CS-COS | 5.5664 | 0.043636 | 19.3113 |
样品 | 质量分数/% | 原子分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Ca | Al | Si | K | S | C | O | Ca | Al | Si | K | S | |
800-6-CS | 2.73 | 33.23 | 60.17 | 0.99 | 2.11 | 0.03 | 0.07 | 5.77 | 52.66 | 38.21 | 0.93 | 1.90 | 0.04 | 0.06 |
800-6-25%KOH-CS | 7.50 | 39.00 | 43.70 | 1.00 | 1.40 | 7.06 | 0 | 14.00 | 55.10 | 24.70 | 0.80 | 1.10 | 4.10 | 0.03 |
800-6-25%KOH-CS-COS | 9.30 | 40.60 | 41.60 | 0.80 | 1.00 | 5.10 | 1.60 | 16.80 | 55.30 | 22.60 | 0.70 | 0.70 | 2.80 | 1.20 |
Table 3 EDS elemental analysis of 800-6-CS, 800-6-25%KOH-CS, and 800-6-25%KOH-CS-COS
样品 | 质量分数/% | 原子分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Ca | Al | Si | K | S | C | O | Ca | Al | Si | K | S | |
800-6-CS | 2.73 | 33.23 | 60.17 | 0.99 | 2.11 | 0.03 | 0.07 | 5.77 | 52.66 | 38.21 | 0.93 | 1.90 | 0.04 | 0.06 |
800-6-25%KOH-CS | 7.50 | 39.00 | 43.70 | 1.00 | 1.40 | 7.06 | 0 | 14.00 | 55.10 | 24.70 | 0.80 | 1.10 | 4.10 | 0.03 |
800-6-25%KOH-CS-COS | 9.30 | 40.60 | 41.60 | 0.80 | 1.00 | 5.10 | 1.60 | 16.80 | 55.30 | 22.60 | 0.70 | 0.70 | 2.80 | 1.20 |
1 | 牟秀娟, 朱干宇, 颜坤, 等. 干法电石渣性质分析及乙炔气逸出行为研究[J]. 化工学报, 2021, 72(2): 1107-1115. |
Mu X J, Zhu G Y, Yan K, et al. Properties analysis of dry-process calcium carbide slag and study on acetylene gas escape behavior[J]. CIESC Journal, 2021, 72(2): 1107-1115. | |
2 | Yang J, Liu S Y, Ma L P. Thermodynamic analysis of hydrogen production from carbide slag used as oxygen carrier, hydrogen carrier and in-situ carbon capture agent during the gasification of lignite[J]. Energy Conversion and Management, 2021, 244: 114456. |
3 | 马晓彤, 李英杰, 王文静, 等. 间歇氯化对电石渣循环捕集CO2性能的影响[J]. 化工学报, 2016, 67(12): 5268-5275. |
Ma X T, Li Y J, Wang W J, et al. Effect of indirect chlorination on cyclic CO2 capture performance of carbide slag[J]. CIESC Journal, 2016, 67(12): 5268-5275. | |
4 | Hu Y P, Wu S M, Li Y J, et al. H2S removal performance of Ca3Al2O6-stabilized carbide slag from CO2 capture cycles using calcium looping[J]. Fuel Processing Technology, 2021, 218: 106845. |
5 | 李锐, 王博涛, 贾丽娟, 等. 改性电石渣干法催化净化工业废气中的NO[J]. 环境工程学报, 2021, 15(5): 1599-1605. |
Li R, Wang B T, Jia L J, et al. Dry catalytic purification of NO by modified calcium carbide slag[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1599-1605. | |
6 | Li K, Song X, Ning P, et al. Energy utilization of yellow phosphorus tail gas: simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide at low temperature[J]. Energy Technology, 2015, 3(2): 136-144. |
7 | 张礼树, 张杰, 韦光建. 电石炉气净化技术研究进展[J]. 广东化工, 2019, 46(5): 160-162. |
Zhang L S, Zhang J, Wei G J. Research progress of carbide furnace vent gas purification technology[J]. Guangdong Chemical Industry, 2019, 46(5): 160-162. | |
8 | 王学谦, 程晨, 马懿星, 等. 直流电晕放电净化羰基硫以及其产物分析[J]. 材料导报, 2017, 31(1): 149-154. |
Wang X Q, Cheng C, Ma Y X, et al. Removal of carbonyl sulfide by DC corona discharge and analysis of the product[J]. Materials Review, 2017, 31(1): 149-154. | |
9 | Pendyala V R R, Jacobs G, Ma W P, et al. Fischer-Tropsch synthesis: effect of carbonyl sulfide poison over a Pt promoted Co/alumina catalyst[J]. Catalysis Today, 2018, 299: 14-19. |
10 | Whelan M E, Min D H, Rhew R C. Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere[J]. Atmospheric Environment, 2013, 73: 131-137. |
11 | Zhao S Z, Yi H H, Tang X L, et al. Adsorptive removal of carbonyl sulfide by Fe-modified activated carbon: experiments and DFT calculations[J]. Adsorption, 2017, 23(7): 1013-1022. |
12 | Li K L, Wang C, Ning P, et al. Surface characterization of metal oxides-supported activated carbon fiber catalysts for simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide[J]. Journal of Environmental Sciences, 2020, 96: 44-54. |
13 | 刘雪珂, 张丽, 刘芬, 等. NHD/MDEA/H2O复合脱硫液催化水解羰基硫[J]. 化工学报, 2020, 71(11): 5286-5293. |
Liu X K, Zhang L, Liu F, et al. Catalytic hydrolysis of carbonyl sulfide with application of NHD/MDEA/H2O[J]. CIESC Journal, 2020, 71(11): 5286-5293. | |
14 | Yang L, Wang X Z, Liu Y, et al. Layer-dependent catalysis of MoS2/graphene nanoribbon composites for efficient hydrodesulfurization[J]. Catalysis Science & Technology, 2017, 7(3): 693-702. |
15 | 王海沛, 陈绍云, 张永春. KOH改性活性炭吸附羰基硫及再生性能的研究[J]. 现代化工, 2019, 39(1): 128-132. |
Wang H P, Chen S Y, Zhang Y C. Study on adsorption of carbonyl sulfide by KOH modified activated carbon and regeneration performance[J]. Modern Chemical Industry, 2019, 39(1): 128-132. | |
16 | Wang X Q, Ma Y X, Ning P, et al. Adsorption of carbonyl sulfide on modified activated carbon under low-oxygen content conditions[J]. Adsorption, 2014, 20(4): 623-630. |
17 | Kim J, Do J Y, Nahm K, et al. Capturing ability for COS gas by a strong bridge bonding of a pair of potassium anchored on carbonate of activated carbon at low temperatures[J]. Separation and Purification Technology, 2019, 211: 421-429. |
18 | Zhao S Z, Tang X L, He M, et al. The potential mechanism of potassium promoting effect in the removal of COS over K/NiAlO mixed oxides[J]. Separation and Purification Technology, 2018, 194: 33-39. |
19 | Bandosz T J. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide[J]. Carbon, 1999, 37(3): 483-491. |
20 | 邱娟. 矿冶废气中低浓度羰基硫吸附剂开发及机理研究[D]. 昆明: 昆明理工大学, 2013. |
Qiu J. Development and mechanism study of low concentration carbonyl sulfur adsorbent in mining and metallurgy waste gas[D]. Kunming: Kunming University of Science and Technology, 2013. | |
21 | 马铭宇, 王超, 李运甲, 等. 高炉煤气中羰基硫水解吸附催化剂的制备及性能研究[J]. 化工学报, 2022, 73(1): 275-283. |
Ma M Y, Wang C, Li Y J, et al. Preparation and performance study of catalyst for COS hydrolysis and adsorption in blast furnace gas[J]. CIESC Journal, 2022, 73(1): 275-283. | |
22 | Niu S L, Liu M Q, Lu C M, et al. Thermogravimetric analysis of carbide slag[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 73-79. |
23 | 何胜平, 孙国玉. 电石渣制水泥的烧成技术研究与实践[J]. 水泥技术, 2018(2): 91-93. |
He S P, Sun G Y. Study and practice of cement burning technology with carbide slag[J]. Cement Technology, 2018(2): 91-93. | |
24 | 马林凤. 利用电石渣制备高活性氧化钙的研究[D]. 北京: 中国石油大学(北京), 2018. |
Ma L F. Study on preparation of high activated calcium oxide from carbide slag[D]. Beijing: China University of Petroleum, 2018. | |
25 | 李宇杰. 分子筛吸附剂脱除高炉煤气中COS和H2S性能及操作参数优化[D]. 太原: 太原理工大学, 2021. |
Li Y J. Performance of molecular sieve adsorbent for removing COS and H2S from blast furnace gas optimization of operating parameters[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
26 | 魏征, 张鑫, 张凤莲, 等. 镁铝水滑石衍生复合氧化物的COS水解性能[J]. 环境科学, 2019, 40(10): 4423-4430. |
Wei Z, Zhang X, Zhang F L, et al. Hydrolysis of COS over MgAl mixed oxides derived from hydrotalcites[J]. Environmental Science, 2019, 40(10): 4423-4430. | |
27 | 刘霜, 齐天勤机, 张永春. KOH改性活性炭及其对微量乙烷的吸附性能[J]. 现代化工, 2019, 39(3): 176-180. |
Liu S, Qi T, Zhang Y C. KOH modified activated carbon and its adsorption performance to trace ethane[J]. Modern Chemical Industry, 2019, 39(3): 176-180. | |
28 | 武越,赵婷,金彦任, 等. 氢氧化锆改性对NH3和SO2吸附性能的影响[J]. 现代化工, 2021, 41(1): 154-158. |
Wu Y, Zhao T, Jin Y R, et al. Effect of zirconium hydroxide modification on its adsorption performance for NH3 and SO2 [J]. Modern Chemical Industry, 2021, 41(1): 154-158. | |
29 | Tanpure S, Ghanwat V, Shinde B, et al. The eggshell waste transformed green and efficient synthesis of K-Ca(OH)2 catalyst for room temperature synthesis of chalcones[J]. Polycyclic Aromatic Compounds, 2022, 42(4): 1322-1340. |
30 | 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 78-92. |
Weng S F. Fourier Transform Infrared Spectrum Analysis[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 78-92. | |
31 | George Z M. Effect of catalyst basicity for COS-SO2 and COS hydrolysis reactions[J]. Journal of Catalysis, 1974, 35(2): 218-224. |
32 | Li X, Wang X Q, Wang L L, et al. Efficient removal of carbonyl sulfur and hydrogen sulfide from blast furnace gas by one-step catalytic process with modified activated carbon[J]. Applied Surface Science, 2022, 579: 152189. |
33 | Liu F D, He H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NO x with NH3 [J]. The Journal of Physical Chemistry C, 2010, 114(40): 16929-16936. |
34 | Li Y, Gao L H, Zhang J H, et al. Synergetic utilization of microwave-assisted fly ash and carbide slag for simultaneous desulfurization and denitrification: high efficiency, low cost and catalytic mechanism[J]. Chemical Engineering Journal, 2022, 437: 135488. |
35 | Song X, Ning P, Wang C, et al. Research on the low temperature catalytic hydrolysis of COS and CS2 over walnut shell biochar modified by Fe-Cu mixed metal oxides and basic functional groups[J]. Chemical Engineering Journal, 2017, 314: 418-433. |
36 | 钱红辉, 曾丹林, 王光辉, 等. 改性氧化铁脱硫剂脱除羰基硫性能的研究[J]. 化学与生物工程, 2008, 25(9): 16-19. |
Qian H H, Zeng D L, Wang G H, et al. Study on carbonyl sulfide removal performance of modified iron oxide desulfurizer[J]. Chemistry & Bioengineering, 2008, 25(9): 16-19. |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate [J]. CIESC Journal, 2023, 74(9): 3946-3955. |
[5] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[6] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[9] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[10] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[15] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||