CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3640-3653.DOI: 10.11949/0438-1157.20230534
• Ionic Liquids and Green Processes • Previous Articles Next Articles
Yepin CHENG1(), Daqing HU2, Yisha XU1, Huayan LIU1, Hanfeng LU1, Guokai CUI1(
)
Received:
2023-06-01
Revised:
2023-07-31
Online:
2023-11-20
Published:
2023-09-25
Contact:
Guokai CUI
程业品1(), 胡达清2, 徐奕莎1, 刘华彦1, 卢晗锋1, 崔国凯1(
)
通讯作者:
崔国凯
作者简介:
程业品(1998—),男,硕士研究生,2112101154@zjut.edu.cn
基金资助:
CLC Number:
Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion[J]. CIESC Journal, 2023, 74(9): 3640-3653.
程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653.
DES | 底物 | 温度/℃ | 时间/h | 产率①/% | 文献 | |
---|---|---|---|---|---|---|
[Ch][Cl]/Urea (1∶2) | PO | — | 110 | 10 | 99 | [ |
[Emim][I]/m-DHB (2∶1) | PO | 0.1 | RT | 6 | 90(79) | [ |
[P4442NH2][Br]/DEG (1∶3) | PO | 0.8 | 60 | 4 | 96(94) | [ |
[AcCh][Br]/LMA (2∶1) | PO | 0.1 | 80 | 2 | 98(96) | [ |
[Ch][I]/Citric acid (2∶1) | PO | 0.5 | 70 | 3 | 98 | [ |
[DBUH][Br]/DEA (2∶1) | PO | 0.1 | RT | 48 | 97 | [ |
[Ch][Cl]/PEG200 (1∶2) | PO | 0.8 | 150 | 5 | 99.1 | [ |
[Ch][I]/NHS (1∶2) | PO | 1.0 | 30 | 10 | 96 | [ |
[Bmim][Cl]/GA/BA(7∶1∶1) | PO | 0.8 | 70 | 7 | 98.3(82.1) | [ |
[Ch][Br]/Im (2∶1) | PO | 1.0 | 100 | 4 | 97(97) | [ |
[P4444][Br]/3-AP(1∶2) | PO | 1.0 | 80 | 1 | 96(90) | [ |
环氧氯丙烷 | 1.0 | 80 | 1 | 99 | ||
丁基环氧丙烷 | 1.0 | 80 | 1 | 89 | ||
环氧苯乙烷 | 1.0 | 80 | 1 | 87 | ||
环氧环己烯 | 1.0 | 80 | 1 | 19 | ||
[N4444][I]/2-HMP(1∶1) | PO | 0.1 | 25 | 20 | 97 | [ |
Tabel 1 CO2 conversion by ionic liquid-based deep eutectic solvents
DES | 底物 | 温度/℃ | 时间/h | 产率①/% | 文献 | |
---|---|---|---|---|---|---|
[Ch][Cl]/Urea (1∶2) | PO | — | 110 | 10 | 99 | [ |
[Emim][I]/m-DHB (2∶1) | PO | 0.1 | RT | 6 | 90(79) | [ |
[P4442NH2][Br]/DEG (1∶3) | PO | 0.8 | 60 | 4 | 96(94) | [ |
[AcCh][Br]/LMA (2∶1) | PO | 0.1 | 80 | 2 | 98(96) | [ |
[Ch][I]/Citric acid (2∶1) | PO | 0.5 | 70 | 3 | 98 | [ |
[DBUH][Br]/DEA (2∶1) | PO | 0.1 | RT | 48 | 97 | [ |
[Ch][Cl]/PEG200 (1∶2) | PO | 0.8 | 150 | 5 | 99.1 | [ |
[Ch][I]/NHS (1∶2) | PO | 1.0 | 30 | 10 | 96 | [ |
[Bmim][Cl]/GA/BA(7∶1∶1) | PO | 0.8 | 70 | 7 | 98.3(82.1) | [ |
[Ch][Br]/Im (2∶1) | PO | 1.0 | 100 | 4 | 97(97) | [ |
[P4444][Br]/3-AP(1∶2) | PO | 1.0 | 80 | 1 | 96(90) | [ |
环氧氯丙烷 | 1.0 | 80 | 1 | 99 | ||
丁基环氧丙烷 | 1.0 | 80 | 1 | 89 | ||
环氧苯乙烷 | 1.0 | 80 | 1 | 87 | ||
环氧环己烯 | 1.0 | 80 | 1 | 19 | ||
[N4444][I]/2-HMP(1∶1) | PO | 0.1 | 25 | 20 | 97 | [ |
1 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
2 | Tlili A, Frogneux X, Blondiaux E, et al. Creating added value with a waste: methylation of amines with CO2 and H2 [J]. Angewandte Chemie International Edition, 2014, 53(10): 2543-2545. |
3 | Zhang Z J, Yao Z Z, Xiang S C, et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation[J]. Energy & Environmental Science, 2014, 7(9): 2868-2899. |
4 | Kirchner B, Intemann B. Catch the carbon dioxide[J]. Nature Chemistry, 2016, 8(5): 401-402. |
5 | Sanz-Pérez E S, Murdock C R, Didas S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
6 | Markewitz P, Kuckshinrichs W, Leitner W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 [J]. Energy & Environmental Science, 2012, 5(6): 7281-7305. |
7 | Kenarsari S D, Yang D L, Jiang G D, et al. Review of recent advances in carbon dioxide separation and capture[J]. RSC Advances, 2013, 3(45): 22739-22773. |
8 | Xiong D Z, Cui G K, Wang J J, et al. Reversible hydrophobic-hydrophilic transition of ionic liquids driven by carbon dioxide[J]. Angewandte Chemie International Edition, 2015, 54(25): 7265-7269. |
9 | Wang C M, Guo Y, Zhu X, et al. Highly efficient CO2 capture by tunable alkanolamine-based ionic liquids with multidentate cation coordination[J]. Chemical Communications, 2012, 48(52): 6526-6528. |
10 | Luo X Y, Guo Y, Ding F, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057. |
11 | Cui G K, Wang J J, Zhang S J. Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chemical Society Reviews, 2016, 45(15): 4307-4339. |
12 | Chen K H, Lin W J, Yu X N, et al. Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas[J]. AIChE Journal, 2015, 61(6): 2028-2034. |
13 | Cui G K, Zheng J J, Luo X Y, et al. Tuning anion-functionalized ionic liquids for improved SO2 capture[J]. Angewandte Chemie International Edition, 2013, 52(40): 10620-10624. |
14 | Wang C M, Zheng J J, Cui G K, et al. Highly efficient SO2 capture through tuning the interaction between anion-functionalized ionic liquids and SO2 [J]. Chemical Communications, 2013, 49(12): 1166-1168. |
15 | Huang K, Chen Y L, Zhang X M, et al. SO2 absorption in acid salt ionic liquids/sulfolane binary mixtures: experimental study and thermodynamic analysis[J]. Chemical Engineering Journal, 2014, 237: 478-486. |
16 | Cui G K, Zhang F T, Zhou X Y, et al. Acylamido-based anion-functionalized ionic liquids for efficient SO2 capture through multiple-site interactions[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2264-2270. |
17 | Huang K, Cai D N, Chen Y L, et al. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption [J]. AIChE Journal, 2013, 59(6): 2227-2235. |
18 | Huang K, Cai D N, Chen Y L, et al. Dual lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S[J]. ChemPlusChem, 2014, 79(2): 241-249. |
19 | Zheng W T, Wu D S, Feng X, et al. Low viscous protic ionic liquids functionalized with multiple Lewis base for highly efficient capture of H2S[J]. Journal of Molecular Liquids, 2018, 263: 209-217. |
20 | Huang K, Zhang J Y, Hu X B, et al. Absorption of H2S and CO2 in aqueous solutions of tertiary-amine functionalized protic ionic liquids[J]. Energy & Fuels, 2017, 31(12): 14060-14069. |
21 | Guo B, Duan E H, Zhong Y F, et al. Absorption and oxidation of H2S in caprolactam tetrabutyl ammonium bromide ionic liquid[J]. Energy & Fuels, 2011, 25(1): 159-161. |
22 | Huang K, Zhang X M, Hu X B, et al. Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2 [J]. AIChE Journal, 2016, 62(12): 4480-4490. |
23 | Cao N N, Gan L, Xiao Q X, et al. Highly efficient and reversible nitric oxide capture by functionalized ionic liquids through multiple-site absorption[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2990-2995. |
24 | Duan E H, Guo B, Zhang D D, et al. Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids[J]. Journal of the Air & Waste Management Association, 2011, 61(12): 1393-1397. |
25 | Revelli A L, Mutelet F, Jaubert J N. Reducing of nitrous oxide emissions using ionic liquids[J]. The Journal of Physical Chemistry B, 2010, 114(24): 8199-8206. |
26 | Tao D J, Chen F F, Tian Z Q, et al. Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions[J]. Angewandte Chemie International Edition, 2017, 56(24): 6843-6847. |
27 | Huang H Y, Padin J, Yang R T. Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
28 | Liu Y M, Tian Z Q, Qu F, et al. Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11894-11900. |
29 | Li Z J, Zhang X P, Dong H F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Advances, 2015, 5(99): 81362-81370. |
30 | Shang D W, Bai L, Zeng S J, et al. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(5): 1228-1236. |
31 | Shang D W, Zhang X P, Zeng S J, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chemistry, 2017, 19(4): 937-945. |
32 | Li P F, Shang D, Tu W H, et al. NH3 absorption performance and reversible absorption mechanisms of protic ionic liquids with six-membered N-heterocyclic cations[J]. Separation and Purification Technology, 2020, 248: 117087. |
33 | Vekariya R L. A review of ionic liquids: applications towards catalytic organic transformations[J]. Journal of Molecular Liquids, 2017, 227: 44-60. |
34 | Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for 'clean' liquid— liquid extraction[J]. Chemical Communications, 1998(16): 1765-1766. |
35 | Egorova K S, Gordeev E G, Ananikov V P. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chemical Reviews, 2017, 117(10): 7132-7189. |
36 | Sun W Z, Wang M C, Zhang Y Q, et al. Protic vs aprotic ionic liquid for CO2 fixation: a simulation study[J]. Green Energy & Environment, 2020, 5(2): 183-194. |
37 | Bi K L, Xu B H, Ding W L, et al. Mechanism of CO2 reduction in carbonylation reaction promoted by ionic liquid additives: a computational and experimental study[J]. Green Energy & Environment, 2023, 8(1): 296-307. |
38 | Xu Y S, Zhang R N, Zhou Y, et al. Tuning ionic liquid-based functional deep eutectic solvents and other functional mixtures for CO2 capture[J]. Chemical Engineering Journal, 2023, 463: 142298. |
39 | 阮佳纬, 叶香珠, 陈立芳, 等. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
Ruan J W, Ye X Z, Chen L F, et al. Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1176-1186. | |
40 | 徐奕莎, 崔国凯, 葛春亮, 等. 低共熔溶剂在CO2捕集分离中的应用[J]. 能源环境保护, 2021, 35(6): 10-17. |
Xu Y S, Cui G K, Ge C L, et al. Deep eutectic solvents for CO2 capture and separation[J]. Energy Environmental Protection, 2021, 35(6): 10-17. | |
41 | Wang Y, Hou Y C, Wu W Z, et al. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents[J]. Green Chemistry, 2016, 18(10): 3089-3097. |
42 | Krishnan A, Gopinath K P, Vo D V N, et al. Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review[J]. Environmental Chemistry Letters, 2020, 18(6): 2031-2054. |
43 | Aissaoui T, Alnashef I, Qureshi U, et al. Potential applications of deep eutectic solvents in natural gas sweetening for CO2 capture[J]. Reviews in Chemical Engineering, 2017, 33: 523-550. |
44 | Zhu A L, Jiang T, Han B X, et al. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates[J]. Green Chemistry, 2007, 9(2): 169-172. |
45 | Liu Y, Cao Z, Zhou Z, et al. Imidazolium-based deep eutectic solvents as multifunctional catalysts for multisite synergistic activation of epoxides and ambient synthesis of cyclic carbonates[J]. Journal of CO2 Utilization, 2021, 53: 101717. |
46 | Cui Y Y, Wang X K, Dong L, et al. Tunable and functional phosphonium-based deep eutectic solvents for synthesizing of cyclic carbonates from CO2 and epoxides under mild conditions[J]. Journal of CO2 Utilization, 2023, 70: 102442. |
47 | Yang X Q, Liu Z M, Chen P, et al. Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by acetylcholine bromide-based deep eutectic solvents[J]. Journal of CO2 Utilization, 2022, 58: 101936. |
48 | He L A, Zhang W W, Yang Y F, et al. Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions[J]. Journal of CO2 Utilization, 2021, 54: 101750. |
49 | Yang X Q, Zou Q Z, Zhao T X, et al. Deep eutectic solvents as efficient catalysts for fixation of CO2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(31): 10437-10443. |
50 | Wu K, Su T, Hao D M, et al. Choline chloride-based deep eutectic solvents for efficient cycloaddition of CO2 with propylene oxide[J]. Chemical Communications, 2018, 54(69): 9579-9582. |
51 | Liu F S, Gu Y Q, Zhao P H, et al. N-hydroxysuccinimide based deep eutectic catalysts as a promising platform for conversion of CO2 into cyclic carbonates at ambient temperature[J]. Journal of CO2 Utilization, 2019, 33: 419-426. |
52 | Wang S, Zhu Z G, Hao D M, et al. Synthesis cyclic carbonates with BmimCl-based ternary deep eutectic solvents system[J]. Journal of CO2 Utilization, 2020, 40: 101250. |
53 | Sheng T, Ou J L, Zhao T X, et al. Efficient fixation of CO2 into cyclic carbonate catalyzed by choline bromide/imidazole derivatives-based deep eutectic solvents[J]. Molecular Catalysis, 2023, 536: 112907. |
54 | Liu F S, Gu Y Q, Xin H, et al. Multifunctional phosphonium-based deep eutectic ionic liquids: insights into simultaneous activation of CO2 and epoxide and their subsequent cycloaddition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16674-16681. |
55 | Wang L, Zhang G Y, Kodama K, et al. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions[J]. Green Chemistry, 2016, 18(5): 1229-1233. |
56 | Inaloo I D, Majnooni S. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems[J]. New Journal of Chemistry, 2019, 43(28): 11275-11281. |
57 | Karimi M, Jodaei A, Khajvandi A, et al. In-situ capture and conversion of atmospheric CO2 into nano-CaCO3 using a novel pathway based on deep eutectic choline chloride-calcium chloride[J]. Journal of Environmental Management, 2018, 206: 516-522. |
58 | Cui G K, Xu Y S, Hu D Q, et al. Tuning functional ionic deep eutectic solvents as green sorbents and catalysts for highly efficient capture and transformation of CO2 to quinazoline-2, 4(1H, 3H)-dione and its derivatives[J]. Chemical Engineering Journal, 2023, 469: 143991. |
59 | Imteyaz S, Suresh C M, Kausar T, et al. Carbon dioxide capture and its electrochemical reduction study in deep eutectic solvent (DES) via experimental and molecular simulation approaches[J]. Journal of CO2 Utilization, 2023, 68: 102349. |
60 | Bohlen B, Wastl D, Radomski J, et al. Electrochemical CO2 reduction to formate on indium catalysts prepared by electrodeposition in deep eutectic solvents[J]. Electrochemistry Communications, 2020, 110: 106597. |
61 | Zhang Z B, Li F F, Nie Y, et al. Zinc-based deep eutectic solvent—an efficient carbonic anhydrase mimic for CO2 hydration and conversion[J]. Separation and Purification Technology, 2021, 276: 119446. |
62 | Xiong X Q, Zhang H, Lai S L, et al. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2 [J]. Reactive and Functional Polymers, 2020, 149: 104502. |
63 | Boroujeni M B, Laeini M S, Nazeri M T, et al. A novel and green in situ strategy for the synthesis of metallophthalocyanines on chitosan and investigation their catalytic activity in the CO2 fixation[J]. Catalysis Letters, 2019, 149(8): 2089-2097. |
64 | Zhang Z B, Wang H, Nie Y, et al. Natural deep eutectic solvents enhanced electro-enzymatic conversion of CO2 to methanol[J]. Frontiers in Chemistry, 2022, 10: 894106. |
65 | Cui G K, Zhao N, Wang J J, et al. Computer-assisted design of imidazolate-based ionic liquids for improving sulfur dioxide capture, carbon dioxide capture, and sulfur dioxide/carbon dioxide selectivity[J]. Chemistry-an Asian Journal, 2017, 12(21): 2863-2872. |
66 | Wang L Y, Xu Y L, Li Z D, et al. CO2/CH4 and H2S/CO2 selectivity by ionic liquids in natural gas sweetening[J]. Energy & Fuels, 2018, 32(1): 10-23. |
67 | Yang D Z, Han Y L, Qi H B, et al. Efficient absorption of SO2 by EmimCl-EG deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6382-6386. |
68 | Zhao T X, Liang J, Zhang Y T, et al. Unexpectedly efficient SO2 capture and conversion to sulfur in novel imidazole-based deep eutectic solvents[J]. Chemical Communications, 2018, 54(65): 8964-8967. |
69 | Long G C, Yang C L, Yang X Q, et al. Bisazole-based deep eutectic solvents for efficient SO2 absorption and conversion without any additives[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2608-2613. |
70 | Wu H Y, Shen M Y, Chen X C, et al. New absorbents for hydrogen sulfide: deep eutectic solvents of tetrabutylammonium bromide/carboxylic acids and choline chloride/carboxylic acids[J]. Separation and Purification Technology, 2019, 224: 281-289. |
71 | Zhong F Y, Zhou L S, Shen J A, et al. Rational design of azole-based deep eutectic solvents for highly efficient and reversible capture of ammonia[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14170-14179. |
72 | Cao Y K, Zhang X P, Zeng S J, et al. Protic ionic liquid-based deep eutectic solvents with multiple hydrogen bonding sites for efficient absorption of NH3 [J]. AIChE Journal, 2020, 66(8): 16253-16261. |
73 | Jiang W J, Zhong F Y, Zhou L S, et al. Chemical dual-site capture of NH3 by unprecedentedly low-viscosity deep eutectic solvents[J]. Chemical Communications, 2020, 56(16): 2399-2402. |
74 | Patiño J, Gutiérrez M C, Carriazo D, et al. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2-CH4 gas mixtures[J]. Energy & Environmental Science, 2012, 5(9): 8699-8707. |
75 | Liu F J, Chen W, Mi J X, et al. Thermodynamic and molecular insights into the absorption of H2S, CO2, and CH4 in choline chloride plus urea mixtures[J]. AIChE Journal, 2019, 65(5): e16574. |
76 | Shi M Z, Xiong W J, Tu Z H, et al. Task-specific deep eutectic solvents for the highly efficient and selective separation of H2S[J]. Separation and Purification Technology, 2021, 276: 119357. |
77 | Hu J Y, Liu H Z, Han B X. Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates[J]. Science China Chemistry, 2018, 61(12): 1486-1493. |
78 | Chen K H, Shi G L, Zhang W D, et al. Computer-assisted design of ionic liquids for efficient synthesis of 3(2H)-furanones: a domino reaction triggered by CO2 [J]. Journal of the American Chemical Society, 2016, 138(43): 14198-14201. |
79 | Hu J Y, Ma J, Zhu Q G, et al. Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones[J]. Angewandte Chemie International Edition, 2015, 54(18): 5399-5403. |
80 | Hu J Y, Ma J, Zhang Z F, et al. A route to convert CO2: synthesis of 3, 4, 5-trisubstituted oxazolones[J]. Green Chemistry, 2015, 17(2): 1219-1225. |
81 | Shi G L, Chen K H, Wang Y T, et al. Highly efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 by hydroxyl functionalized aprotic ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5760-5765. |
82 | Zhao Y F, Yu B, Yang Z Z, et al. A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones[J]. Angewandte Chemie International Edition, 2014, 53(23): 5922-5925. |
83 | Zhao Y F, Wu Y Y, Yuan G F, et al. Azole-anion-based aprotic ionic liquids: functional solvents for atmospheric CO2 transformation into various heterocyclic compounds[J]. Chemistry-an Asian Journal, 2016, 11(19): 2735-2740. |
84 | Xue C F, Feng L, Zhang Q, et al. High and fast carbon dioxide capture of hydroxypyridine-based ionogel depending on pore structure of mesoporous silica vesicle in the simulated flue gas[J]. International Journal of Greenhouse Gas Control, 2019, 84: 111-120. |
85 | Hiremath V, Jadhav A H, Lee H, et al. Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chemical Engineering Journal, 2016, 287: 602-617. |
86 | Cheng J, Li Y N, Hu L Q, et al. CO2 adsorption performance of ionic liquid [P66614][2-Op] loaded onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy & Fuels, 2016, 30(4): 3251-3256. |
87 | Cheng J, Li Y N, Hu L Q, et al. CO2 absorption and diffusion in ionic liquid [P66614][Triz] modified molecular sieves SBA-15 with various pore lengths[J]. Fuel Processing Technology, 2018, 172: 216-224. |
88 | Ding M, Jiang H L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion [J]. ACS Catalysis, 2018, 8(4): 3194-3201. |
89 | Wu N H, Ji X Y, Xie W L, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
90 | Li R A, Zhang K L, Chen G X, et al. Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions[J]. Chemistry of Materials, 2021, 33(13): 5189-5196. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[6] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[7] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[10] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[11] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[12] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[13] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 953
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 528
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||