CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 159-170.DOI: 10.11949/0438-1157.20230654
• Reviews and monographs • Previous Articles
Yating LI(), Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU()
Received:
2023-06-30
Revised:
2023-09-07
Online:
2024-03-11
Published:
2024-01-25
Contact:
Taotao FU
李亚婷(), 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛()
通讯作者:
付涛涛
作者简介:
李亚婷(2000—),女,硕士研究生,18437603730@163.com
基金资助:
CLC Number:
Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application[J]. CIESC Journal, 2024, 75(1): 159-170.
李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170.
Add to citation manager EndNote|Ris|BibTeX
Fig.9 (a) Surface of the lotus leaf; (b) Surface of rice leaves; (c) Rose petal surface; (d) Surface of the mouth margin area of Nepenthes[4, 93, 96, 99]
1 | Benkert R, Zhu J J, Zimmermann G, et al. Long-term xylem pressure measurements in the liana Tetrastigma voinierianum by means of the xylem pressure probe[J]. Planta, 1995, 196(4): 804-813. |
2 | Kirby A R, Gunning A P, Waldron K W, et al. Visualization of plant cell walls by atomic force microscopy[J]. Biophysical Journal, 1996, 70(3): 1138-1143. |
3 | Zimmermann U, Schneider H, Wegner L H, et al. Water ascent in tall trees: does evolution of land plants rely on a highly metastable state?[J]. New Phytologist, 2004, 162(3): 575-615. |
4 | Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
5 | Liu H W, Bhushan B. Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM[J]. Ultramicroscopy, 2003, 97(1/2/3/4): 321-340. |
6 | 李韡, 张昱, 孟昊, 等. 微通道中液-液萃取传质特性的研究[J]. 化学工业与工程, 2013, 30(4): 36-41. |
Li W, Zhang Y, Meng H, et al. Mass transfer characteristics of liquid-liquid extraction in microchannel[J]. Chemical Industry and Engineering, 2013, 30(4): 36-41. | |
7 | 王彦, 王靖涛. 微流控技术制备聚酰胺微胶囊的工艺研究[J]. 化学工业与工程, 2018, 35(6): 20-25. |
Wang Y, Wang J T. Preparation of polyamide microcapsules based on microfluidics[J]. Chemical Industry and Engineering, 2018, 35(6): 20-25. | |
8 | Zai Y F, Min C, Wang Z L, et al. A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18[J]. Lab on a Chip, 2022, 22(18): 3436-3452. |
9 | Lucas R. Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten[J]. Kolloid-Zeitschrift, 1918, 23(1): 15-22. |
10 | Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. |
11 | Das S, Mitra S K. Different regimes in vertical capillary filling[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(6): 063005. |
12 | Das S, Waghmare P R, Mitra S K. Early regimes of capillary filling[J]. Physical Review E, 2012, 86(6): 067301. |
13 | Hamraoui A, Nylander T. Analytical approach for the Lucas-Washburn equation[J]. Journal of Colloid and Interface Science, 2002, 250(2): 415-421. |
14 | Lorenceau É, Quéré D, Ollitrault J Y, et al. Gravitational oscillations of a liquid column in a pipe[J]. Physics of Fluids, 2002, 14(6): 1985-1992. |
15 | Masoodi R, Languri E, Ostadhossein A. Dynamics of liquid rise in a vertical capillary tube[J]. Journal of Colloid and Interface Science, 2013, 389(1): 268-272. |
16 | Delannoy J, Lafon S, Koga Y, et al. The dual role of viscosity in capillary rise[J]. Soft Matter, 2019, 15(13): 2757-2761. |
17 | Mao Z Y, Deng A N, Jin X Y, et al. A microfluidic-chip-based system with loop-mediated isothermal amplification for rapid and parallel detection of Trichomonas vaginalis and human papillomavirus[J]. The Analyst, DOI: 10.1039/d3an011236 . |
18 | Kim S J, Paczesny S, Takayama S, et al. Preprogrammed, parallel on-chip immunoassay using system-level capillarity control[J]. Analytical Chemistry, 2013, 85(14): 6902-6907. |
19 | Dai X, Zhou W Y, Yang S, et al. Microchannel process for phenol production via the cleavage of cumene hydroperoxide[J]. Chemical Engineering Science, 2019, 199: 398-404. |
20 | Duan C, Yang X H, Jiang S K, et al. Early stage of externally driven filling of viscous fluids within a microfluidic pore-doublet network[J]. Physics of Fluids, 2022, 34(2): 022001. |
21 | Kazemi H, Ls M, Porterfield K L, et al. Numerical simulation of water-oil flow in naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1976, 16(6): 317-326. |
22 | Lin C M, Chang W J, Fang T H. Flip-chip underfill packaging considering capillary force, pressure difference, and inertia effects[J]. Journal of Electronic Packaging, 2007, 129(1): 48-55. |
23 | Ransohoff T C, Radke C J. Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore[J]. Journal of Colloid and Interface Science, 1988, 121(2): 392-401. |
24 | Wang X J, Cong Q, Zhang J J, et al. Multivariate coupling mechanism of NOCTUIDAE moth wings’ surface superhydrophobicity[J]. Chinese Science Bulletin, 2009, 54(4): 569-575. |
25 | Tas N R, Haneveld J, Jansen H V, et al. Capillary filling speed of water in nanochannels[J]. Applied Physics Letters, 2004, 85(15): 3274-3276. |
99 | 陈华伟, 张鹏飞, 张力文, 等. 猪笼草口缘区表面液体单方向连续搬运机制[J]. 中国科学基金, 2016, 30(3): 217-219. |
Chen H W, Zhang P F, Zhang L W, et al. One-way continuous transportation mechanism of surface liquid in pitcher plant mouth edge area[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 217-219. | |
26 | 朱豫晋, 梁新建, 金磊. 微/纳机电系统中的毛细黏附作用[J]. 科技导报, 2009, 27(2): 99-101. |
Zhu Y J, Liang X J, Jin L. Capilary stiction action in the MEMS/NEMS[J]. Science & Technology Review, 2009, 27(2): 99-101. | |
27 | Quéré D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533-538. |
28 | Yang H Q, Przekwas A J. Computational modeling of microfluid devices with free surface liquid handling[C]//International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors, and Actuators. Santa Clara, California, 1998: 498-505. |
29 | Martic G, Gentner F, Seveno D, et al. A molecular dynamics simulation of capillary imbibition[J]. Langmuir, 2002, 18(21): 7971-7976. |
30 | Stroberg W, Keten S, Liu W K. Hydrodynamics of capillary imbibition under nanoconfinement[J]. Langmuir, 2012, 28(40): 14488-14495. |
31 | Chibbaro S, Biferale L, Diotallevi F, et al. Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling[J]. Europhysics Letters, 2008, 84(4): 44003. |
32 | 杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展[J]. 科学通报, 2016, 61(14): 1574-1584. |
Yang M, Cao B Y. Advances of capillary filling of Newtonian fluids in micro-and nanochannels[J]. Chinese Science Bulletin, 2016, 61(14): 1574-1584. | |
33 | Bosanquet C H. On the flow of liquids into capillary tubes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1923, 45(267): 525-531. |
34 | Szekely J, Neumann A W, Chuang Y K. The rate of capillary penetration and the applicability of the washburn equation[J]. Journal of Colloid and Interface Science, 1971, 35(2): 273-278. |
35 | Batch G L. Capillary impregnation of aligned fibrous beds: experiments and model[J]. Journal of Reinforced Plastics and Composites, 1996, 15(10): 1027-1051. |
36 | Siebold A, Nardin M, Schultz J, et al. Effect of dynamic contact angle on capillary rise phenomena[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161(1): 81-87. |
37 | Zhmud B V, Tiberg F, Hallstensson K. Dynamics of capillary rise[J]. Journal of Colloid and Interface Science, 2000, 228(2): 263-269. |
38 | Fries N, Dreyer M. An analytic solution of capillary rise restrained by gravity[J]. Journal of Colloid and Interface Science, 2008, 320(1): 259-263. |
39 | Fries N, Dreyer M. The transition from inertial to viscous flow in capillary rise[J]. Journal of Colloid and Interface Science, 2008, 327(1): 125-128. |
40 | Quéré D, Raphaël É, Ollitrault J Y. Rebounds in a capillary tube[J]. Langmuir, 1999, 15(10): 3679-3682. |
41 | Zhong X X, Sun B H, Liao S J. Analytic solutions of the rise dynamics of liquid in a vertical cylindrical capillary[J]. European Journal of Mechanics - B/Fluids, 2019, 78: 1-10. |
42 | Qu W L, Mohiuddin Mala G, Li D Q. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2000, 43(3): 353-364. |
43 | White N C, Troian S M. Why capillary flows in slender triangular grooves are so stable against disturbances[J]. Physical Review Fluids, 2019, 4(5): 054003. |
44 | Li X X, Fan X F, Brandani S. Difference in pore contact angle and the contact angle measured on a flat surface and in an open space[J]. Chemical Engineering Science, 2014, 117: 137-145. |
45 | Zou J R, Yue X A, An W Q, et al. Experimental study on the effect of tube diameter on gas-liquid wettability in silica microtubules[J]. Journal of Materials Research and Technology, 2022, 20: 4333-4341. |
46 | Thomson J. On certain curious motions observable at the surfaces of wine and other alcoholic liquors[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1855, 10(67): 330-333. |
47 | Marangoni C. Ueber die ausbreitung der tropfen einer flüssigkeit auf der oberfläche einer anderen[J]. Annalen Der Physik Und Chemie, 1871, 219(7): 337-354. |
48 | Chen J, Yang C, Mao Z S. The interphase mass transfer in liquid-liquid systems with Marangoni effect[J]. The European Physical Journal Special Topics, 2015, 224(2): 389-399. |
49 | 沙勇, 陈虹伶, 李樟云, 等. 皂膜解吸Marangoni对流观察及分析[J]. 化学工程, 2010, 38(7): 35-38. |
Sha Y, Chen H L, Li Z Y, et al. Observation and analysis of Marangoni convection induced by desorption in soap film[J]. Chemical Engineering(China), 2010, 38(7): 35-38. | |
50 | 陈虹伶. 单液滴传质过程界面湍动现象[D]. 厦门: 厦门大学, 2011. |
Chen H L. Interface turbulence phenomenon in single droplet mass transfer process[D]. Xiamen: Xiamen University, 2011. | |
51 | 刘长旭, 曾爱武, 余国琮. 气液界面对流传质的观测与定量分析[J]. 化学工业与工程, 2008, 25(4): 283-288, 309. |
Liu C X, Zeng A W, Yu G C. Quantitative analysis and observation of the convection near gas-liquid interface[J]. Chemical Industry and Engineering, 2008, 25(4): 283-288, 309. | |
52 | Pearson J R A. On convection cells induced by surface tension[J]. Journal of Fluid Mechanics, 1958, 4(5): 489-500. |
53 | Quéré D. Non-sticking drops[J]. Reports on Progress in Physics, 2005, 68(11): 2495-2532. |
54 | Björneholm O, Hansen M H, Hodgson A, et al. Water at interfaces[J]. Chemical Reviews, 2016, 116(13): 7698-7726. |
55 | Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena[M]. New York: Springer New York, 2004. |
56 | Pászli I, László K. Molar surface energy and Eötvös's law[J]. Colloid and Polymer Science, 2007, 285(13): 1505-1508. |
57 | MacLeod D B. On a relation between surface tension and density[J]. Transactions of the Faraday Society, 1923, 19: 38-41. |
58 | 赵燕. 具有特殊润湿性能的聚合物基界面材料的构筑: 表面化学组成与微观几何结构[D]. 上海: 上海交通大学, 2008. |
Zhao Y. Construction of polymer-based interface materials with special wetting properties: surface chemical composition and microstructure[D]. Shanghai: Shanghai Jiao Tong University, 2008. | |
59 | 苏星. 基于接触线理论的润湿性影响因素探究[D]. 厦门: 厦门大学, 2018. |
Su X. Study on factors affecting wettability based on contact line theory[D]. Xiamen: Xiamen University, 2018. | |
60 | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
61 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
62 | 庞丹亚. 细长平行板间液桥形成及流体力学研究[D]. 天津: 天津大学, 2021. |
Pang D Y. Study on formation and hydrodynamics of liquid bridge between slender parallel plates[D]. Tianjin: Tianjin University, 2021. | |
63 | 刘紫潇, 范增华. 基于图像处理的平面-球面液桥力检测[J]. 计算机应用与软件, 2022, 39(8): 58-61, 131. |
Liu Z X, Fan Z H. Force detection of liquid bridge between a plane and a sphere based on image processing[J]. Computer Applications and Software, 2022, 39(8): 58-61, 131. | |
64 | 杜友耀, 李锡夔. 二维液桥计算模型及湿颗粒材料离散元模拟[J]. 计算力学学报, 2015, 32(4): 496-502. |
Du Y Y, Li X K. 2D computational model of liquid bridge and DEM simulation of wet granular materials[J]. Chinese Journal of Computational Mechanics, 2015, 32(4): 496-502. | |
65 | Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B: Chemical, 1990, 1(1/2/3/4/5/6): 244-248. |
66 | Wang T, Yu C, Xie X. Microfluidics for environmental applications[M]//Microfluidics in Biotechnology. Cham: Springer International Publishing, 2020: 267-290. |
67 | Piradashvili K, Alexandrino E M, Wurm F R, et al. Reactions and polymerizations at the liquid-liquid interface[J]. Chemical Reviews, 2016, 116(4): 2141-2169. |
68 | Lu Y, Shi W W, Jiang L, et al. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay[J]. Electrophoresis, 2009, 30(9): 1497-1500. |
69 | Lu Y, Shi W W, Qin J H, et al. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing[J]. Analytical Chemistry, 2010, 82(1): 329-335. |
70 | Carrilho E, Martinez A W, Whitesides G M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics[J]. Analytical Chemistry, 2009, 81(16): 7091-7095. |
71 | Liu H, Crooks R M. Three-dimensional paper microfluidic devices assembled using the principles of origami[J]. Journal of the American Chemical Society, 2011, 133(44): 17564-17566. |
72 | Efremov A N, Stanganello E, Welle A, et al. Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell-cell communication[J]. Biomaterials, 2013, 34(7): 1757-1763. |
73 | Jokinen V. Functional surfaces for microfluidics in proteomic analysis[D]. Helsinki: University of Helsinki, 2011. |
74 | You I, Kang S M, Lee S, et al. Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device[J]. Angewandte Chemie International Edition, 2012, 51(25): 6126-6130. |
75 | 杜新. 应用于CD-like微流体芯片的毛细被动阀研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2011. |
Du X. Study on capillary passive valve applied to CD-like microfluidic chip[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011. | |
76 | 张平, 徐磊, 邓永波. 微通道内台阶阀截止过程中的毛细流动动态效应[J]. 光学精密工程, 2011, 19(12): 2919-2926. |
Zhang P, Xu L, Deng Y B. Dynamic effect in process of stopping capillary by step valve in microchannel[J]. Optics and Precision Engineering, 2011, 19(12): 2919-2926. | |
77 | 姚印. 开放流道微流控芯片的设计及制备技术研究[D]. 北京: 北京化工大学, 2022. |
Yao Y. Research on design and fabrication technology of open channel microfluidic chip[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
78 | Yafia M, Ymbern O, Olanrewaju A O, et al. Microfluidic chain reaction of structurally programmed capillary flow events[J]. Nature, 2022, 605(7910): 464-469. |
79 | 康琦, 侯瑞. 微重力流体管理在航天工程中的应用[J]. 自然杂志, 2007, 29(6): 328-334, 373. |
Kang Q, Hou R. The applications of microgravity fluid management in the aerospace engineering[J]. Chinese Journal of Nature, 2007, 29(6): 328-334, 373. | |
80 | 徐升华, 周宏伟, 王彩霞, 等. 微重力条件下不同截面形状管中毛细流动的实验研究[J]. 物理学报, 2013, 62(13): 134702. |
Xu S H, Zhou H W, Wang C X, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition[J]. Acta Physica Sinica, 2013, 62(13): 134702. | |
81 | 杨恩博, 金宇鹏, 杨光, 等. 内角钝度对微重力下液体推进剂毛细流动特性的影响[J]. 上海交通大学学报, 2023, 57(6): 739-746. |
Yang E B, Jin Y P, Yang G, et al. Effect of corner roundedness on capillary flow of liquid propellants in microgravity[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 739-746. | |
82 | Concus P, Finn R. On the behavior of a capillary surface in a wedge[J]. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(2): 292-299. |
83 | Weislogel M M, Lichter S. Capillary flow in an interior corner[J]. Journal of Fluid Mechanics, 1998, 373: 349-378. |
84 | Schwiebert M K, Leong W H. Underfill flow as viscous flow between parallel plates driven by capillary action[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, 1996, 19(2): 133-137. |
85 | Wan J W, Zhang W J, Bergstrom D J. Experimental verification of models for underfill flow driven by capillary forces in flip-chip packaging[J]. Microelectronics Reliability, 2008, 48(3): 425-430. |
86 | Young W B. Capillary impregnation into cylinder banks[J]. Journal of Colloid and Interface Science, 2004, 273(2): 576-580. |
87 | Han S J, Wang K K. Analysis of the flow of encapsulant during underfill encapsulation of flip-chips[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 1997, 20(4): 424-433. |
88 | Kim Y B, Sung J. Capillary-driven micro flows for the underfill process in microelectronics packaging[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 3751-3759. |
89 | Ding Y Z, Hong L F, Nie B Q, et al. Capillary-driven automatic packaging[J]. Lab on a Chip, 2011, 11(8): 1464-1469. |
90 | Xiao B Q, Huang Q W, Chen H X, et al. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media[J]. Fractals, 2021, 29(1): 2150017. |
91 | Atangana A. Principle of groundwater flow[M]//Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Amsterdam: Elsevier, 2018: 15-47. |
92 | Morrow N R, Mason G. Recovery of oil by spontaneous imbibition[J]. Current Opinion in Colloid & Interface Science, 2001, 6(4): 321-337. |
93 | Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
94 | Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. |
95 | Bixler G D, Bhushan B. Fluid drag reduction with shark-skin riblet inspired microstructured surfaces[J]. Advanced Functional Materials, 2013, 23(36): 4507-4528. |
96 | Feng L, Zhang Y N, Xi J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. |
97 | Qiu Y C, Jiang L, Liu K S. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials[J]. Scientia Sinica Chimica, 2011, 41(2): 403-408. |
98 | 任鸟飞, 汪小华, 王辉静, 等. 仿壁虎微纳米黏附阵列研究进展[J]. 微纳电子技术, 2006, 43(8): 386-392. |
Ren N F, Wang X H, Wang H J, et al. Progress on the micro/nano-structures adhesive array mimicking gecko foot-hair[J]. Micronanoelectronic Technology, 2006, 43(8): 386-392. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[6] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[7] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[11] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[12] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[13] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[14] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[15] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||