CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1802-1815.DOI: 10.11949/0438-1157.20231069

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels

Juan LI1(), Yaowen CAO1, Zhangyu ZHU1, Lei SHI2, Jia LI1   

  1. 1.College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
    2.School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
  • Received:2023-10-16 Revised:2023-12-23 Online:2024-06-25 Published:2024-05-25
  • Contact: Juan LI

仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化

李娟1(), 曹耀文1, 朱章钰1, 石雷2, 李佳1   

  1. 1.南京林业大学机械电子工程学院,江苏 南京 210037
    2.中南大学能源科学与工程学院,湖南 长沙 410083
  • 通讯作者: 李娟
  • 作者简介:李娟(1987—),女,博士,副教授,lijuan87@njfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51506098);江苏省高校自然科学基金项目(15KJB470007)

Abstract:

Motivated by the vital role of fish tail fins in fluid flow, microchannel with homocercal fin is designed. Three key structural parameters are identified: the relative length of the tail fin depression along its major axis Dt/Wch, the relative width of the tail fin bt/Wch and the angle determining the maximum height of the fin αt. The effects of structural parameters on average friction coefficient, average Nusselt number, overall performance factor, thermal resistance, and pump power of the bionic microchannel are analyzed numerically. The optimal solution to the structural parameters of the conformal caudal fin was obtained through uniform test analysis, regression fitting and genetic algorithm multi-objective optimization. The results show that the overall performance factor of the bionic homocercal fin microchannel ranges from 1.74 to 1.89, indicating significantly better comprehensive heat transfer performance compared to the rectangular smooth channel. Increasing the relative length Dt/Wch and angle αt and decreasing width bt/Wch improves the microchannel’s heat transfer performance, with the relative length Dt/Wch and the angle αt having the greatest influence. Optimal microchannel performance is achieved when the structural parameters are Dt/Wch=0.476, bt/Wch=0.135, and αt=146.96°.

Key words: microchannel, tail fin, bionic, numerical simulation, heat transfer

摘要:

基于鱼类尾鳍在流动过程中的重要作用,仿生设计并建立了正形尾鳍结构微通道物理模型,研究了仿生尾鳍肋间距对微通道综合传热性能的影响,提取了尾鳍结构凹陷长轴相对长度Dt/Wch、决定尾鳍结构最大宽度的bt/Wch以及决定尾鳍结构最大高度的张角αt三个结构参数,数值分析了结构参数对仿生微通道平均摩擦因数、平均Nusselt数、综合性能因子以及热阻和泵功的影响规律;并通过均匀试验分析回归拟合和遗传算法多目标优化得到了正形尾鳍结构参数的最优解。结果表明,综合性能因子随着仿生肋间距的增大而减小,当间距为4 mm时,正形尾鳍结构微通道的综合性能因子变化范围为1.74~1.89,综合传热性能明显优于矩形光滑通道;随着Dt/Wch的增加、bt/Wch的减小或αt的增加,尾鳍结构微通道的综合传热性能提升,其中凹陷长轴相对长度Dt/Wch和高度张角αt影响较大。结构参数为Dt/Wch=0.476、bt/Wch=0.135、αt=146.96°时,微通道性能有较大提升。

关键词: 微通道, 尾鳍, 仿生, 数值模拟, 传热

CLC Number: