CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1802-1815.DOI: 10.11949/0438-1157.20231069
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Juan LI1(), Yaowen CAO1, Zhangyu ZHU1, Lei SHI2, Jia LI1
Received:
2023-10-16
Revised:
2023-12-23
Online:
2024-06-25
Published:
2024-05-25
Contact:
Juan LI
通讯作者:
李娟
作者简介:
李娟(1987—),女,博士,副教授,lijuan87@njfu.edu.cn
基金资助:
CLC Number:
Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels[J]. CIESC Journal, 2024, 75(5): 1802-1815.
李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815.
Add to citation manager EndNote|Ris|BibTeX
几何参数 | 尺寸 |
---|---|
尾鳍结构圆直径(Dt) | 1.2 mm |
尾鳍结构凹陷长半轴长(at) | 0.6 mm |
尾鳍结构凹陷短半轴长(bt) | 0.24 mm |
尾鳍结构高度张角(αt) | 180° |
Table 1 Geometric dimensions of the biomimetic structure
几何参数 | 尺寸 |
---|---|
尾鳍结构圆直径(Dt) | 1.2 mm |
尾鳍结构凹陷长半轴长(at) | 0.6 mm |
尾鳍结构凹陷短半轴长(bt) | 0.24 mm |
尾鳍结构高度张角(αt) | 180° |
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) |
---|---|---|---|
去离子水 | 998.2 | 4183 | — |
6063铝合金 | 2690 | 900 | 218 |
Table 2 Physical properties of solid and liquid
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) |
---|---|---|---|
去离子水 | 998.2 | 4183 | — |
6063铝合金 | 2690 | 900 | 218 |
工况 | 进口Reynolds数 | 进口流速/(m/s) | 体积流量/(ml/min) |
---|---|---|---|
1 | 400 | 0.5034 | 90.60 |
2 | 550 | 0.6922 | 124.59 |
3 | 700 | 0.8809 | 158.58 |
4 | 850 | 1.0697 | 192.54 |
5 | 1000 | 1.2585 | 226.53 |
6 | 1150 | 1.4472 | 260.49 |
7 | 1300 | 1.6360 | 294.48 |
Table 3 Experimental conditions
工况 | 进口Reynolds数 | 进口流速/(m/s) | 体积流量/(ml/min) |
---|---|---|---|
1 | 400 | 0.5034 | 90.60 |
2 | 550 | 0.6922 | 124.59 |
3 | 700 | 0.8809 | 158.58 |
4 | 850 | 1.0697 | 192.54 |
5 | 1000 | 1.2585 | 226.53 |
6 | 1150 | 1.4472 | 260.49 |
7 | 1300 | 1.6360 | 294.48 |
序号 | 网格数量/个 | 平均摩擦因数(fave,sim) | 摩擦因数误差 | 平均Nusselt数(Nuave,sim) | Nusselt数误差 |
---|---|---|---|---|---|
1 | 118万 | 0.1875 | 2.01% | 7.09 | 6.27% |
2 | 170万 | 0.1860 | 1.29% | 6.86 | 3.12% |
3 | 200万 | 0.1849 | 0.62% | 6.76 | 1.76% |
4 | 252万 | 0.1841 | 0.10% | 6.70 | 0.55% |
5 | 314万 | 0.1840 | — | 6.68 | — |
Table 4 Validation of grid independence
序号 | 网格数量/个 | 平均摩擦因数(fave,sim) | 摩擦因数误差 | 平均Nusselt数(Nuave,sim) | Nusselt数误差 |
---|---|---|---|---|---|
1 | 118万 | 0.1875 | 2.01% | 7.09 | 6.27% |
2 | 170万 | 0.1860 | 1.29% | 6.86 | 3.12% |
3 | 200万 | 0.1849 | 0.62% | 6.76 | 1.76% |
4 | 252万 | 0.1841 | 0.10% | 6.70 | 0.55% |
5 | 314万 | 0.1840 | — | 6.68 | — |
x* | Nux,4 | x* | Nux,4 | x* | Nux,4 |
---|---|---|---|---|---|
0.0001 | 26.7 | 0.00714 | 7.63 | 0.025 | 5.87 |
0.0025 | 10.4 | 0.00833 | 7.32 | 0.033 | 5.77 |
0.005 | 8.44 | 0.01 | 7 | 0.05 | 5.62 |
0.00556 | 8.18 | 0.0125 | 6.63 | 0.1 | 5.45 |
0.00625 | 7.92 | 0.0167 | 6.26 | 1 | 5.35 |
Table 5 Thermal entry region Nusselt number
x* | Nux,4 | x* | Nux,4 | x* | Nux,4 |
---|---|---|---|---|---|
0.0001 | 26.7 | 0.00714 | 7.63 | 0.025 | 5.87 |
0.0025 | 10.4 | 0.00833 | 7.32 | 0.033 | 5.77 |
0.005 | 8.44 | 0.01 | 7 | 0.05 | 5.62 |
0.00556 | 8.18 | 0.0125 | 6.63 | 0.1 | 5.45 |
0.00625 | 7.92 | 0.0167 | 6.26 | 1 | 5.35 |
参数 | a型 | b型 | c型 | d型 | e型 |
---|---|---|---|---|---|
尾鳍结构数量 | 19 | 17 | 15 | 14 | 13 |
间距/mm | 4 | 4.5 | 5 | 5.5 | 6 |
Table 6 Different interval parameter of MC-T
参数 | a型 | b型 | c型 | d型 | e型 |
---|---|---|---|---|---|
尾鳍结构数量 | 19 | 17 | 15 | 14 | 13 |
间距/mm | 4 | 4.5 | 5 | 5.5 | 6 |
试验编号 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
1 | 1 | 5 | 7 |
2 | 2 | 10 | 3 |
3 | 3 | 4 | 10 |
4 | 4 | 9 | 6 |
5 | 5 | 3 | 2 |
6 | 6 | 8 | 9 |
7 | 7 | 2 | 5 |
8 | 8 | 7 | 1 |
9 | 9 | 1 | 8 |
10 | 10 | 6 | 4 |
11 | 11 | 11 | 11 |
Table 7 U11(113) uniform design
试验编号 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
1 | 1 | 5 | 7 |
2 | 2 | 10 | 3 |
3 | 3 | 4 | 10 |
4 | 4 | 9 | 6 |
5 | 5 | 3 | 2 |
6 | 6 | 8 | 9 |
7 | 7 | 2 | 5 |
8 | 8 | 7 | 1 |
9 | 9 | 1 | 8 |
10 | 10 | 6 | 4 |
11 | 11 | 11 | 11 |
试验编号 | |||||
---|---|---|---|---|---|
1 | 0.40 | 0.129 | 156 | 0.767 | 0.0044 |
2 | 0.42 | 0.159 | 132 | 0.798 | 0.0042 |
3 | 0.44 | 0.123 | 174 | 0.698 | 0.0047 |
4 | 0.46 | 0.153 | 150 | 0.682 | 0.0045 |
5 | 0.48 | 0.117 | 126 | 0.688 | 0.0045 |
6 | 0.50 | 0.147 | 168 | 0.665 | 0.0049 |
7 | 0.52 | 0.111 | 144 | 0.679 | 0.0048 |
8 | 0.54 | 0.141 | 120 | 0.649 | 0.0047 |
9 | 0.56 | 0.105 | 162 | 0.586 | 0.0056 |
10 | 0.58 | 0.135 | 138 | 0.641 | 0.0051 |
11 | 0.60 | 0.165 | 180 | 0.606 | 0.0061 |
Table 8 Uniform design table for MC-T
试验编号 | |||||
---|---|---|---|---|---|
1 | 0.40 | 0.129 | 156 | 0.767 | 0.0044 |
2 | 0.42 | 0.159 | 132 | 0.798 | 0.0042 |
3 | 0.44 | 0.123 | 174 | 0.698 | 0.0047 |
4 | 0.46 | 0.153 | 150 | 0.682 | 0.0045 |
5 | 0.48 | 0.117 | 126 | 0.688 | 0.0045 |
6 | 0.50 | 0.147 | 168 | 0.665 | 0.0049 |
7 | 0.52 | 0.111 | 144 | 0.679 | 0.0048 |
8 | 0.54 | 0.141 | 120 | 0.649 | 0.0047 |
9 | 0.56 | 0.105 | 162 | 0.586 | 0.0056 |
10 | 0.58 | 0.135 | 138 | 0.641 | 0.0051 |
11 | 0.60 | 0.165 | 180 | 0.606 | 0.0061 |
系数 | MC-T | |
---|---|---|
1.9605 | 0.0148 | |
-3.4258 | -0.0165 | |
1.212×10-3 | -0.1758 | |
-2.969×10-3 | 5.31×10-5 | |
4.6921 | -7.045×10-3 | |
-10.5677 | 0.1775 | |
-4.09×10-3 | 3.28×10-5 | |
1.3994 | 0.5492 | |
0.0355 | -4.135×10-4 | |
-1.7×10-6 | -1.62×10-8 |
Table 9 Coefficients of multivariate quadratic regression equations for Rtot and Wp
系数 | MC-T | |
---|---|---|
1.9605 | 0.0148 | |
-3.4258 | -0.0165 | |
1.212×10-3 | -0.1758 | |
-2.969×10-3 | 5.31×10-5 | |
4.6921 | -7.045×10-3 | |
-10.5677 | 0.1775 | |
-4.09×10-3 | 3.28×10-5 | |
1.3994 | 0.5492 | |
0.0355 | -4.135×10-4 | |
-1.7×10-6 | -1.62×10-8 |
序号 | |||||
---|---|---|---|---|---|
1 | 0.400 | 0.140 | 120.00 | 0.0147 | 0.652 |
2 | 0.405 | 0.139 | 124.36 | 0.0150 | 0.631 |
3 | 0.409 | 0.139 | 130.28 | 0.0153 | 0.609 |
4 | 0.413 | 0.136 | 132.32 | 0.0156 | 0.598 |
5 | 0.420 | 0.137 | 134.77 | 0.0158 | 0.586 |
6 | 0.423 | 0.137 | 137.00 | 0.0160 | 0.578 |
7 | 0.440 | 0.138 | 133.14 | 0.0162 | 0.572 |
8 | 0.428 | 0.134 | 141.58 | 0.0165 | 0.562 |
9 | 0.470 | 0.138 | 134.14 | 0.0170 | 0.546 |
10 | 0.480 | 0.137 | 135.10 | 0.0172 | 0.536 |
11 | 0.464 | 0.137 | 148.69 | 0.0175 | 0.523 |
12 | 0.468 | 0.137 | 155.99 | 0.0179 | 0.513 |
13 | 0.513 | 0.137 | 141.85 | 0.0183 | 0.502 |
14 | 0.551 | 0.125 | 142.22 | 0.0189 | 0.479 |
15 | 0.554 | 0.121 | 146.30 | 0.0193 | 0.469 |
16 | 0.566 | 0.119 | 154.31 | 0.0201 | 0.456 |
17 | 0.574 | 0.117 | 157.30 | 0.0205 | 0.450 |
18 | 0.600 | 0.121 | 163.78 | 0.0210 | 0.445 |
19 | 0.599 | 0.108 | 161.88 | 0.0219 | 0.439 |
20 | 0.600 | 0.105 | 163.78 | 0.0225 | 0.438 |
Table 10 Pareto optimized solution set for MC-T
序号 | |||||
---|---|---|---|---|---|
1 | 0.400 | 0.140 | 120.00 | 0.0147 | 0.652 |
2 | 0.405 | 0.139 | 124.36 | 0.0150 | 0.631 |
3 | 0.409 | 0.139 | 130.28 | 0.0153 | 0.609 |
4 | 0.413 | 0.136 | 132.32 | 0.0156 | 0.598 |
5 | 0.420 | 0.137 | 134.77 | 0.0158 | 0.586 |
6 | 0.423 | 0.137 | 137.00 | 0.0160 | 0.578 |
7 | 0.440 | 0.138 | 133.14 | 0.0162 | 0.572 |
8 | 0.428 | 0.134 | 141.58 | 0.0165 | 0.562 |
9 | 0.470 | 0.138 | 134.14 | 0.0170 | 0.546 |
10 | 0.480 | 0.137 | 135.10 | 0.0172 | 0.536 |
11 | 0.464 | 0.137 | 148.69 | 0.0175 | 0.523 |
12 | 0.468 | 0.137 | 155.99 | 0.0179 | 0.513 |
13 | 0.513 | 0.137 | 141.85 | 0.0183 | 0.502 |
14 | 0.551 | 0.125 | 142.22 | 0.0189 | 0.479 |
15 | 0.554 | 0.121 | 146.30 | 0.0193 | 0.469 |
16 | 0.566 | 0.119 | 154.31 | 0.0201 | 0.456 |
17 | 0.574 | 0.117 | 157.30 | 0.0205 | 0.450 |
18 | 0.600 | 0.121 | 163.78 | 0.0210 | 0.445 |
19 | 0.599 | 0.108 | 161.88 | 0.0219 | 0.439 |
20 | 0.600 | 0.105 | 163.78 | 0.0225 | 0.438 |
项目 | ||||||
---|---|---|---|---|---|---|
优化前 | 0.6 | 0.12 | 180 | 0.576 | 0.00560 | |
点1 | 优化后 | 0.405 | 0.139 | 120.37 | 0.786 | 0.00398 |
模拟值 | 0.405 | 0.139 | 120.37 | 0.773 | 0.00404 | |
点2 | 优化后 | 0.437 | 0.132 | 120.91 | 0.744 | 0.00416 |
模拟值 | 0.437 | 0.132 | 120.91 | 0.756 | 0.00398 | |
点3 | 优化后 | 0.476 | 0.135 | 121.01 | 0.698 | 0.00438 |
模拟值 | 0.476 | 0.135 | 121.01 | 0.703 | 0.00456 | |
点4 | 优化后 | 0.511 | 0.133 | 146.96 | 0.649 | 0.00483 |
模拟值 | 0.511 | 0.133 | 146.96 | 0.633 | 0.00497 | |
点5 | 优化后 | 0.554 | 0.112 | 174.99 | 0.592 | 0.00558 |
模拟值 | 0.554 | 0.112 | 174.99 | 0.604 | 0.00534 |
Table 11 Comparison of results before and after optimization
项目 | ||||||
---|---|---|---|---|---|---|
优化前 | 0.6 | 0.12 | 180 | 0.576 | 0.00560 | |
点1 | 优化后 | 0.405 | 0.139 | 120.37 | 0.786 | 0.00398 |
模拟值 | 0.405 | 0.139 | 120.37 | 0.773 | 0.00404 | |
点2 | 优化后 | 0.437 | 0.132 | 120.91 | 0.744 | 0.00416 |
模拟值 | 0.437 | 0.132 | 120.91 | 0.756 | 0.00398 | |
点3 | 优化后 | 0.476 | 0.135 | 121.01 | 0.698 | 0.00438 |
模拟值 | 0.476 | 0.135 | 121.01 | 0.703 | 0.00456 | |
点4 | 优化后 | 0.511 | 0.133 | 146.96 | 0.649 | 0.00483 |
模拟值 | 0.511 | 0.133 | 146.96 | 0.633 | 0.00497 | |
点5 | 优化后 | 0.554 | 0.112 | 174.99 | 0.592 | 0.00558 |
模拟值 | 0.554 | 0.112 | 174.99 | 0.604 | 0.00534 |
1 | 于仓仓, 云和明, 崔云杰, 等. 菱形微通道圆盘热沉流动传热的数值模拟研究及优化[J]. 节能, 2022, 41(4): 31-37. |
Yu C C, Yun H M, Cui Y J, et al. Numerical simulation rsearch and optimization of flow and heat transfer in diamond microchannel disk heat sink[J]. Energy Conservation, 2022, 41(4): 31-37. | |
2 | 吉亚萍, 云和明, 郭训虎. 电子元件冷却的场协同分析[J]. 煤气与热力, 2019, 39(6): 20-26. |
Ji Y P, Yun H M, Guo X H. Field synergy analysis of electronic components cooling[J]. Gas & Heat, 2019, 39(6): 20-26. | |
3 | 王宁. 仿生蛛网型微通道散热器结构研究及参数优化[D]. 太原: 中北大学, 2022. |
Wang N. Research on structure and parameter optimization of bionic cobweb micro-channel radiator[D]. Taiyuan: North University of China, 2022. | |
4 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
5 | Wang G L, Chen T, Tian M F, et al. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119142. |
6 | Li F, Ma Q M, Xin G M, et al. Heat transfer and flow characteristics of microchannels with solid and porous ribs[J]. Applied Thermal Engineering, 2020, 178: 115639. |
7 | 陆卓群, 谢志辉, 王蓉, 等. 单侧内肋阵微通道复合热沉的流动和传热性能分析与构形设计[J]. 工程热物理学报, 2022, 43(11): 2841-2851. |
Lu Z Q, Xie Z H, Wang R, et al. Flow and heat transfer performance analysis and constructal design of hybrid microchannel heat sink with single-sided internal fin array[J]. Journal of Engineering Thermophysics, 2022, 43(11): 2841-2851. | |
8 | Hsieh S S, Hsieh Y C, Hsu Y C, et al. Low Reynolds numbers convective heat transfer enhancement in roughened microchannels[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104486. |
9 | 李金星, 潘治良, 李平. 端部圆角结构提升带针肋微通道热沉均温性[J]. 科学通报, 2018, 63(1): 108-116. |
Li J X, Pan Z L, Li P. Improvement of temperature uniformity in microchannel with pin-fin based on endwall fillet structure[J]. Chinese Science Bulletin, 2018, 63(1): 108-116. | |
10 | 郭勇, 朱传勇, 郭雯, 等. 扰流结构微通道流动沸腾换热特性的数值研究[J]. 工程热物理学报, 2022, 43(5): 1296-1303. |
Guo Y, Zhu C Y, Guo W, et al. Numerical study on heat transfer characteristics of flow boiling in microchannel with turbulence structure[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1296-1303. | |
11 | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
Li Y F, Wang Z P. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. | |
12 | Pan M Q, Wang H Q, Zhong Y J, et al. Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities[J]. International Journal of Heat and Mass Transfer, 2019, 134: 1199-1208. |
13 | 范贤光, 黄江尧, 许英杰. 凹槽型微通道传热与流动性能的数值分析[J]. 半导体光电, 2020, 41(2): 232-236, 241. |
Fan X G, Huang J Y, Xu Y J. Numerical analysis on heat transfer and flow characteristics of grooved microchannel[J]. Semiconductor Optoelectronics, 2020, 41(2): 232-236, 241. | |
14 | Zhou F, Zhou W, Qiu Q F, et al. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger[J]. Applied Thermal Engineering, 2018, 137: 616-631. |
15 | 王兆奇, 李孟山, 胡海涛, 等. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119. |
Wang Z Q, Li M S, Hu H T, et al. Development of simulation model for double row folded microchannel heat exchanger[J]. CIESC Journal, 2021, 72(S1): 113-119. | |
16 | 陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3): 62-70. |
Chen C W, Wang X Y, Xin G M. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70. | |
17 | 谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4): 99-107. |
Xie W Y, Lv X C, Li L, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107. | |
18 | 陈涛, 王桂莲, 吴永进, 等. 交错内肋微通道的流动和传热特性研究[J]. 热能动力工程, 2022, 37(9): 128-135. |
Chen T, Wang G L, Wu Y J, et al. Study on flow and heat transfer characteristics of microchannels with staggered internal ribs[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 128-135. | |
19 | Chen Y P, Deng Z L. Gas flow in micro tree-shaped hierarchical network[J]. International Journal of Heat and Mass Transfer, 2015, 80: 163-169. |
20 | Xia C H, Fu J Z, Lai J T, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90: 1032-1042. |
21 | Mills Z G, Warey A, Alexeev A. Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels[J]. International Journal of Heat and Mass Transfer, 2016, 97: 450-460. |
22 | Yu C M, Liu M F, Zhang C H, et al. Bio-inspired drag reduction: from nature organisms to artificial functional surfaces[J]. Giant, 2020, 2: 100017. |
23 | 宋善鹏, 于志家, 刘兴华, 等. 超疏水表面微通道内水的传热特性[J]. 化工学报, 2008, 59(10): 2465-2469. |
Song S P, Yu Z J, Liu X H, et al. Heat transfer characteristics of water flowing in microchannels with super-hydrophobic inner surface[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(10): 2465-2469. | |
24 | Shen X, Zhai Y L, Guo W J, et al. Optimization and thermodynamic analysis of rib arrangement and height for microchannels with sharkskin bionic ribs[J]. Numerical Heat Transfer Part A-Applications, 2023, 84(1): 54-70. |
25 | Li P, Guo D Z, Huang X Y. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846. |
26 | Gao Q Y, Zou H B, Li J. Numerical investigations of heat transfer and fluid flow characteristics in microchannels with bionic fish-shaped ribs[J]. Processes, 2023, 11(6): 1861. |
27 | Ling H J, Wang Z D. Investigation on thrust force conversion method of oscillating caudal fin based on wake vortex field structure[J]. Applied Bionics and Biomechanics, 2021, 2021: 5561268. |
28 | Xie F R, Zuo Q Y, Chen Q L, et al. Designs of the biomimetic robotic fishes performing body and/or caudal fin (BCF) swimming locomotion: a review[J]. Journal of Intelligent & Robotic Systems, 2021, 102(1): 13. |
29 | Zhang X, Su Y M, Wang Z L. Numerical and experimental studies of influence of the caudal fin shape on the propulsion performance of a flapping caudal fin[J]. Journal of Hydrodynamics, 2011, 23(3): 325-332. |
30 | Shah R K, London A L. Other doubly connected ducts[M]∥Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978: 341-353. |
31 | Li Z G, Huai X L, Tao Y J, et al. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks[J]. Applied Thermal Engineering, 2007, 27(17): 2803-2814. |
32 | 刘文竹, 云和明, 王宝雪, 等. 基于场协同和 耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
Liu W Z, Yun H M, Wang B X, et al. Microchannel topology optimization based on field synergy and entransy[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
33 | 赵光攀, 向立平, 罗振兵, 等. 不同结构形式微通道热沉的传热性能[J]. 化学工程, 2023, 51(11): 7-12. |
Zhao G P, Xiang L P, Luo Z B, et al. Heat transfer performance of microchannel heat sinks with different structures[J]. Chemical Engineering (China), 2023, 51(11): 7-12. | |
34 | Wang J Y, Yan W, Sang T, et al. Aeroelastic response and structural improvement for heavy-duty truck cab deflectors[C]∥SAE Technical Paper Series. PA, United States: SAE International, 2019. |
35 | 张国秋, 王文璇. 均匀试验设计方法应用综述[J]. 数理统计与管理, 2013, 32(1): 89-99. |
Zhang G Q, Wang W X. A citation review on the uniform experimental design[J]. Journal of Applied Statistics and Management, 2013, 32(1): 89-99. | |
36 | 杜双奎. 试验优化设计与统计分析[M]. 2版. 北京: 科学出版社, 2020. |
Du S K. Experimental Design and Statistical Analysis[M]. 2nd ed. Beijing: Science Press, 2020. | |
37 | Yan Y F, Yan H Y, Yin S Y, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation[J]. International Journal of Heat and Mass Transfer, 2019, 129(15): 468-479. |
38 | Yao P T, Zhai Y L, Li Z H, et al. Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle[J]. Case Studies in Thermal Engineering, 2021, 25: 100963. |
[1] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[2] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[3] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[4] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[5] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[6] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[7] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[8] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[9] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[10] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[11] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[12] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
[13] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[14] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[15] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||