CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3968-3978.DOI: 10.11949/0438-1157.20230622
• Material science and engineering, nanotechnology • Previous Articles
Yuanchao LIU1,2(), Bin GUAN1, Jianbin ZHONG1, Yifan XU1, Xuhao JIANG1, Duan LI1
Received:
2023-06-25
Revised:
2023-08-31
Online:
2023-11-20
Published:
2023-09-25
Contact:
Yuanchao LIU
刘远超1,2(), 关斌1, 钟建斌1, 徐一帆1, 蒋旭浩1, 李耑1
通讯作者:
刘远超
作者简介:
刘远超(1977—),男,博士,副教授,liuyuanchao@bipt.edu.cn
基金资助:
CLC Number:
Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf)[J]. CIESC Journal, 2023, 74(9): 3968-3978.
刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978.
Add to citation manager EndNote|Ris|BibTeX
材料 | ZA | TA | LA | ZO | TO | LO |
---|---|---|---|---|---|---|
ZrSe2 | 32.14% | 35.40% | 23.90% | 3.24% | 1.30% | 0.17% |
HfSe2 | 31.07% | 36.07% | 25.62% | 2.24% | 1.21% | 0.15% |
Table 1 Contributions of phonon branches to the total thermal conductivity of monolayer ZrSe2 and HfSe2 (300 K)
材料 | ZA | TA | LA | ZO | TO | LO |
---|---|---|---|---|---|---|
ZrSe2 | 32.14% | 35.40% | 23.90% | 3.24% | 1.30% | 0.17% |
HfSe2 | 31.07% | 36.07% | 25.62% | 2.24% | 1.21% | 0.15% |
材料 | 平均格林艾森参数 | ||||
---|---|---|---|---|---|
300 K | 450 K | 600 K | 750 K | 900 K | |
ZrSe2 | 1.514 | 1.517 | 1.518 | 1.518 | 1.519 |
HfSe2 | 1.339 | 1.345 | 1.347 | 1.348 | 1.349 |
Table 2 Mean Grüneisen parameters of each phonon branch to monolayer ZrSe2 and HfSe2
材料 | 平均格林艾森参数 | ||||
---|---|---|---|---|---|
300 K | 450 K | 600 K | 750 K | 900 K | |
ZrSe2 | 1.514 | 1.517 | 1.518 | 1.518 | 1.519 |
HfSe2 | 1.339 | 1.345 | 1.347 | 1.348 | 1.349 |
材料 | 载流子 | 有效质量 | 形变势常数El/eV | 弹性常数C2D/(J/m2) | 载流子迁移率μ/(cm2/(V·s)) | 弛豫时间τ/(10-13 s) | |
---|---|---|---|---|---|---|---|
m | m | ||||||
ZrSe2 | 空穴(p-type) | -0.354 | -0.331 | -7.76 | 64.24 | 128.82 | 0.25 |
电子(n-type) | 1.999 | 0.251 | -1.93 | 64.24 | 490.33 | 1.97 | |
HfSe2 | 空穴(p-type) | -0.383 | -0.368 | -7.64 | 69.11 | 117.48 | 0.25 |
电子(n-type) | 2.231 | 0.218 | -1.40 | 69.11 | 1031.54 | 4.08 |
Table 3 m*, El, C2D, μ and τ of carriers in monolayer ZrSe2 and HfSe2 (300 K)
材料 | 载流子 | 有效质量 | 形变势常数El/eV | 弹性常数C2D/(J/m2) | 载流子迁移率μ/(cm2/(V·s)) | 弛豫时间τ/(10-13 s) | |
---|---|---|---|---|---|---|---|
m | m | ||||||
ZrSe2 | 空穴(p-type) | -0.354 | -0.331 | -7.76 | 64.24 | 128.82 | 0.25 |
电子(n-type) | 1.999 | 0.251 | -1.93 | 64.24 | 490.33 | 1.97 | |
HfSe2 | 空穴(p-type) | -0.383 | -0.368 | -7.64 | 69.11 | 117.48 | 0.25 |
电子(n-type) | 2.231 | 0.218 | -1.40 | 69.11 | 1031.54 | 4.08 |
1 | Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
2 | Qin D, Yan P, Ding G, et al. Monolayer PdSe2: a promising two-dimensional thermoelectric material[J]. Scientific Reports, 2018, 8(1): 2764. |
3 | Li A R, Hu C L, He B, et al. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor[J]. Nature Communications, 2021, 12(1): 5408. |
4 | Jaziri N, Boughamoura A, Müller J, et al. A comprehensive review of thermoelectric generators: technologies and common applications[J]. Energy Reports, 2020, 6(7): 264-287. |
5 | Liu Z H, Mao J, Sui J H, et al. High thermoelectric performance of α-MgAgSb for power generation[J]. Energy & Environmental Science, 2018, 11(1): 23-44. |
6 | Ortega S, Ibáñez M, Liu Y, et al. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks[J]. Chemical Society Reviews, 2017, 46(12): 3510-3528. |
7 | Mleczko M J, Zhang C F, Lee H R, et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides[J]. Science Advances, 2017, 3(8): e1700481. |
8 | Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method[J]. The Journal of Chemical Physics, 2013, 138(20): 204704-204712. |
9 | Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides[J]. The Journal of Chemical Physics, 2014, 140(12): 124710-124722. |
10 | Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. |
11 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
12 | Blöchl P E, Jepsen O, Andersen O K. Improved tetrahedron method for brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233. |
13 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
14 | Baroni S, de Gironcoli S, Corso A D, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
15 | Li W, Carrete J, Katcho N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758. |
16 | Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities[J]. Computer Physics Communications, 2006, 175(1): 67-71. |
17 | Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80. |
18 | Takagi S, Toriumi A, Iwase M, et al. On the universality of inversion layer mobility in Si MOSFET’s (Part Ⅰ): Effects of substrate impurity concentration[J]. IEEE Transactions on Electron Devices, 1994, 41(12): 2357-2362. |
19 | Zhang L C, Qin G Z, Fang W Z, et al. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility[J]. Scientific Reports, 2016, 6(1): 19830. |
20 | Peng B, Zhang H, Shao H Z, et al. Towards intrinsic phonon transport in single-layer MoS2 [J]. Annalen Der Physik, 2016, 528(6): 504-511. |
21 | Hong Y, Zhang J C, Zeng X C. Thermal conductivity of monolayer MoSe2 and MoS2 [J]. The Journal of Physical Chemistry C, 2016, 120(45): 26067-26075. |
22 | Ouyang B, Chen S D, Jing Y H, et al. Enhanced thermoelectric performance of two dimensional MS2 (M=Mo, W) through phase engineering[J]. Journal of Materiomics, 2018, 4(4): 329-337. |
23 | Lindroth D O, Erhart P. Thermal transport in van der Waals solids from first-principles calculations[J]. Physical Review B, 2016, 94(11): 115205. |
24 | Shafique A, Samad A, Shin Y H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 20677-20683. |
25 | Abdulsalam M, Rugut E, Joubert D P. Mechanical, thermal and thermoelectric properties of MX2 (M=Zr, Hf; X=S, Se)[J]. Materials Today Communications, 2020, 25: 101434. |
26 | Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368. |
27 | Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71(20): 205214. |
28 | Huang L F, Cao T F, Gong P L, et al. Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene[J]. Solid State Communications, 2014, 190: 5-9. |
29 | Wu X F, Varshney V, Lee J, et al. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity[J]. Nano Letters, 2016, 16(6): 3925-3935. |
30 | Carrete J, Mingo N, Curtarolo S. Low thermal conductivity and triaxial phononic anisotropy of SnSe[J]. Applied Physics Letters, 2014, 105(10): 101907-101911. |
31 | Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. |
32 | Yumnam G, Pandey T, Singh A K. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: a first principles study[J]. The Journal of Chemical Physics, 2015, 143(23): 234704-234712. |
33 | Sun J F, Singh D J. Thermoelectric properties of Mg2 (Ge,Sn): model and optimization of ZT[J]. Physical Review Applied, 2016, 5(2): 024006. |
34 | Li G P, Ding G Q, Gao G Y. Thermoelectric properties of SnSe2 monolayer[J]. Journal of Physics: Condensed Matter, 2017, 29(1): 015001. |
35 | Jin Z L, Liao Q W, Fang H S, et al. A revisit to high thermoelectric performance of single-layer MoS2 [J]. Scientific Reports, 2015, 5(1): 18342. |
36 | Ding G Q, Gao G Y, Huang Z S, et al. Thermoelectric properties of monolayer MSe2 (M=Zr, Hf): low lattice thermal conductivity and a promising figure of merit[J]. Nanotechnology, 2016, 27(37): 375703. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[11] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[12] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[13] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[14] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[15] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||