CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3956-3967.DOI: 10.11949/0438-1157.20230132
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Lei WU1,2(), Jiao LIU1(), Changcong LI1, Jun ZHOU1,2(), Gan YE1, Tiantian LIU1, Ruiyu ZHU1, Qiuli ZHANG1,2, Yonghui SONG2,3
Received:
2023-02-21
Revised:
2023-05-02
Online:
2023-11-20
Published:
2023-09-25
Contact:
Jun ZHOU
吴雷1,2(), 刘姣1(), 李长聪1, 周军1,2(), 叶干1, 刘田田1, 朱瑞玉1, 张秋利1,2, 宋永辉2,3
通讯作者:
周军
作者简介:
吴雷(1988—),男,博士,工程师,wulei@xauat.edu.cn基金资助:
CLC Number:
Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes[J]. CIESC Journal, 2023, 74(9): 3956-3967.
吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967.
Add to citation manager EndNote|Ris|BibTeX
Sample | Industrial analysis/%(mass) | Elemental analysis/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
FCad. | Mad. | Aad. | Vdaf. | Cdaf. | Hdaf. | Odaf. | Ndaf. | Sdaf. | |
coal | 54.68 | 6.71 | 10.85 | 34.26 | 81.84 | 4.23 | 9.87 | 0.95 | 3.11 |
Table 1 Proximate and elemental analysis of raw coal
Sample | Industrial analysis/%(mass) | Elemental analysis/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
FCad. | Mad. | Aad. | Vdaf. | Cdaf. | Hdaf. | Odaf. | Ndaf. | Sdaf. | |
coal | 54.68 | 6.71 | 10.85 | 34.26 | 81.84 | 4.23 | 9.87 | 0.95 | 3.11 |
Composition | Content/%(mass) |
---|---|
Fe2O3 | 29.89 |
Al2O3 | 7.25 |
CaO | 25.29 |
MgO | 1.36 |
SiO2 | 12.01 |
K2O | 0.08 |
Na2O | 0.12 |
Table 2 Ash analysis of raw coal
Composition | Content/%(mass) |
---|---|
Fe2O3 | 29.89 |
Al2O3 | 7.25 |
CaO | 25.29 |
MgO | 1.36 |
SiO2 | 12.01 |
K2O | 0.08 |
Na2O | 0.12 |
Samples | ID1/IG | ID2/IG | ID3/IG | ID4/IG | IG/IAll |
---|---|---|---|---|---|
SC-0 | 2.145 | 0.284 | 1.519 | 0.543 | 0.151 |
SC-0.4 | 2.206 | 0.215 | 1.489 | 0.434 | 0.130 |
SC-0.6 | 1.228 | 0.252 | 1.884 | 0.352 | 0.168 |
SC-0.8 | 1.156 | 0.174 | 1.279 | 0.774 | 0.245 |
SC-1.0 | 1.152 | 0.135 | 0.791 | 0.324 | 0.247 |
SC-1.2 | 1.181 | 0.230 | 0.829 | 0.274 | 0.222 |
CNT | 1.150 | 0.154 | 1.390 | 0.266 | 0.240 |
Table 3 Raman spectral fitting parameters for modified bluecoke powders at different alkali-carbon ratios
Samples | ID1/IG | ID2/IG | ID3/IG | ID4/IG | IG/IAll |
---|---|---|---|---|---|
SC-0 | 2.145 | 0.284 | 1.519 | 0.543 | 0.151 |
SC-0.4 | 2.206 | 0.215 | 1.489 | 0.434 | 0.130 |
SC-0.6 | 1.228 | 0.252 | 1.884 | 0.352 | 0.168 |
SC-0.8 | 1.156 | 0.174 | 1.279 | 0.774 | 0.245 |
SC-1.0 | 1.152 | 0.135 | 0.791 | 0.324 | 0.247 |
SC-1.2 | 1.181 | 0.230 | 0.829 | 0.274 | 0.222 |
CNT | 1.150 | 0.154 | 1.390 | 0.266 | 0.240 |
34 | Minutolo P, Commodo M, Santamaria A, et al. Characterization of flame-generated 2-D carbon nano-disks[J]. Carbon, 2014, 68: 138-148. |
35 | Brubaker Z E, Langford J J, Kapsimalis R J, et al. Quantitative analysis of Raman spectral parameters for carbon fibers: practical considerations and connection to mechanical properties[J]. Journal of Materials Science, 2021, 56(27): 15087-15121. |
36 | Beyssac O, Goffé B, Petitet J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276. |
37 | Meng D X, Yue C Y, Wang T, et al. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel, 2021, 287: 119538. |
38 | Zhang T K, Zhang Y F, Wang Q, et al. Mechanism of K-catalyzed transformation of solid carbon structure into carbon nanotubes in coal[J]. Fuel Processing Technology, 2020, 204: 106409. |
39 | Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel, 2019, 239: 230-238. |
40 | He R Z, Deng J, Deng X L, et al. Effects of alkali and alkaline earth metals of inherent minerals on Fe-catalyzed coal pyrolysis[J]. Energy, 2022, 238: 121985. |
41 | Wang Z P, Ogata H, Morimoto S, et al. Nanocarbons from rice husk by microwave plasma irradiation: from graphene and carbon nanotubes to graphenated carbon nanotube hybrids[J]. Carbon, 2015, 94: 479-484. |
42 | Sun Y, Wang Y J, Ma H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon, 2021, 178: 515-527. |
43 | He L M, Hu S, Jiang L, et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports[J]. Fuel Processing Technology, 2018, 176: 7-14. |
44 | Lv X M, Zhang Y F, Wang Y, et al. Formation of coal-based carbon nanotubes by Fe-K catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105400. |
45 | Yuan J C, Wang Y, Tang M F, et al. Preparation of N, O co-doped carbon nanotubes and activated carbon composites with hierarchical porous structure for CO2 adsorption by coal pyrolysis[J]. Fuel, 2023, 333: 126465. |
46 | Zhou J, Wu L, Zhou J J, et al. Advances in coal catalytic microwave pyrolysis and its carbon-based absorbing microwave catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4060-4074. |
47 | Zhang P, Wu M D, Liang C, et al. In-situ exsolution of Fe-Ni alloy catalysts for H2 and carbon nanotube production from microwave plasma-initiated decomposition of plastic wastes[J]. Journal of Hazardous Materials, 2023, 445: 130609. |
1 | Jorschick H, Preuster P, Bösmann A, et al. Hydrogenation of aromatic and heteroaromatic compounds—a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems[J]. Sustainable Energy & Fuels, 2021, 5(5): 1311-1346. |
2 | Yang R R, Zhou J, Wu L, et al. Understanding effects of potassium activator on the porous structure and adsorption performance of bluecoke-based porous powder during microwave heating[J]. Journal of Molecular Liquids, 2022, 366: 120249. |
3 | Wu L, Liu J, Reddy B R, et al. Preparation of coal-based carbon nanotubes using catalytical pyrolysis: a brief review[J]. Fuel Processing Technology, 2022, 229: 107171. |
4 | Yang R R, Zhou J, Wu L, et al. Fabrication of developed porous carbon derived from bluecoke powder by microwave-assisted KOH activation for simulative organic wastewater treatment[J]. Diamond and Related Materials, 2022, 124: 108929. |
5 | Zhang X Y, Sun B K, Fan X, et al. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors[J]. Fuel, 2022, 311: 122552. |
6 | Ma M Y, Chai W C, Cao Y J. Structure and electrochemical property of coal-based activated carbon modified by nitric acid[C]//TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings. Cham: Springer, 2021: 15-24. |
7 | Im U S, Kim J, Lee S H, et al. Preparation of activated carbon from needle coke via two-stage steam activation process[J]. Materials Letters, 2019, 237: 22-25. |
8 | Zhang G J, Qu J W, Du Y N, et al. Hydrogen production from CO2 reforming of methane over high pressure H2O2 modified different semi-cokes[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2948-2957. |
9 | Reddy B R, Ashok I, Vinu R. Preparation of carbon nanostructures from medium and high ash Indian coals via microwave-assisted pyrolysis[J]. Advanced Powder Technology, 2020, 31(3): 1229-1240. |
10 | Shen X, Zhao Z, Li H, et al. Microwave-assisted pyrolysis of plastics with iron-based catalysts for hydrogen and carbon nanotubes production[J]. Materials Today Chemistry, 2022, 26: 101166. |
11 | Das T, Saikia B K, Baruah B P. Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: value added products from low grade coal[J]. Gondwana Research, 2016, 31: 295-304. |
12 | Deng H, Li G X, Yang H B, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation[J]. Chemical Engineering Journal, 2010, 163(3): 373-381. |
13 | Ashok A, Kumar A, Ponraj J, et al. Synthesis and growth mechanism of bamboo like N-doped CNT/graphene nanostructure incorporated with hybrid metal nanoparticles for overall water splitting[J]. Carbon, 2020, 170: 452-463. |
14 | Nie H R, Cui M M, Russell T P. A route to rapid carbon nanotube growth[J]. Chemical Communications, 2013, 49(45): 5159-5161. |
15 | Bajpai R, Wagner H D. Fast growth of carbon nanotubes using a microwave oven[J]. Carbon, 2015, 82: 327-336. |
16 | Mahmood A, Muhmood T, Ahmad F. Carbon nanotubes heterojunction with graphene like carbon nitride for the enhancement of electrochemical and photocatalytic activity[J]. Materials Chemistry and Physics, 2022, 278: 125640. |
17 | Botas J A, Serrano D P, Guil-López R, et al. Methane catalytic decomposition over ordered mesoporous carbons: a promising route for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9788-9794. |
18 | Qiu J S, Wang Z Y, Zhao Z B, et al. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere[J]. Fuel, 2007, 86(1/2): 282-286. |
19 | Zhao Y, Liu L, Qiu P H, et al. Impacts of chemical fractionation on Zhundong coal’s chemical structure and pyrolysis reactivity[J]. Fuel Processing Technology, 2017, 155: 144-152. |
20 | Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation[J]. Energy, 2019, 181: 136-147. |
21 | Zhang J B, Jin L J, Cheng J, et al. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes[J]. Carbon, 2013, 55: 221-232. |
22 | Widayat, Satriadi H, Wibawa L P, et al. Oil and gas characteristics of coal with pyrolysis process[C]//AIP Conference Proceedings. AIP Publishing LLC, 2022, 2453(1): 020077. |
23 | Liu H P, Zhang L Y, Chen T P, et al. Experimental study on the fluidization behaviors of the superfine particles[J]. Chemical Engineering Journal, 2015, 262: 579-587. |
24 | Xia H Y, Wang K, Yang S H, et al. Formation of graphene flowers during high temperature activation of mesocarbon microbeads with KOH[J]. Microporous and Mesoporous Materials, 2016, 234: 384-391. |
25 | Bai Y, Yue H, Wang J, et al. Super-durable ultralong carbon nanotubes[J]. Science, 2020, 369(6507): 1104-1106. |
26 | Lin X C, Wang C H, Ideta K, et al. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014, 118: 257-264. |
27 | Osswald S, Flahaut E, Gogotsi Y. In situ Raman spectroscopy study of oxidation of double-and single-wall carbon nanotubes[J]. Chemistry of Materials, 2006, 18(6): 1525-1533. |
28 | Xu L, Liu H Y, Jin Y, et al. Structural order and dielectric properties of coal chars[J]. Fuel, 2014, 137: 164-171. |
29 | Mohammadi S, Kolahdouz Z, Mohajerzadeh S. Hydrogenation-assisted unzipping of carbon nanotubes to realize graphene nano-sheets[J]. Journal of Materials Chemistry C, 2013, 1(7): 1309-1316. |
30 | Yao L S, Yi B K, Zhao X Q, et al. Microwave-assisted decomposition of waste plastic over Fe/FeAl2O4 to produce hydrogen and carbon nanotubes[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105577. |
31 | Lee S H, Park J, Kim H R, et al. Synthesis of carbon nanotube fibers using the direct spinning process based on design of experiment (DOE)[J]. Carbon, 2016, 100: 647-655. |
32 | Liu X H, Zheng Y, Liu Z H, et al. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157: 97-106. |
33 | Sheng C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324. |
[1] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[2] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[3] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[4] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[5] | Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping [J]. CIESC Journal, 2022, 73(4): 1743-1753. |
[6] | Shide WU, Feng YI, Dan PING, Yifei ZHANG, Jian HAO, Guoji LIU, Shaoming FANG. NH4Cl assisted preparation of Ni-N-CNTs catalyst and its performance for electrochemical CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4484-4497. |
[7] | Lu ZHAO, Guoqing NING, Xingxun LI. S-doped carbon nanotubes used as conductive additives to improve the electrochemical performance of LMFP [J]. CIESC Journal, 2021, 72(12): 6388-6398. |
[8] | SHI Xiaofei, JIANG Qinyuan, LI Run, CUI Yiming, LIU Qingxiong, WEI Fei, ZHANG Rufan. Synthesis and structure control of horizontally aligned carbon nanotubes: progress and perspectives [J]. CIESC Journal, 2021, 72(1): 86-115. |
[9] | Huizhong ZHAO, Min LEI, Tianhou HUANG, Tao LIU, Min ZHANG. Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2 [J]. CIESC Journal, 2020, 71(S1): 272-281. |
[10] | ZHOU Feng, HUANG Huimin, QIAN Feiyue, SHEN Yaoliang, ZHOU Xiaoji, LI Xin, XIA Xue. Effects of carbon nanotubes mats structure on rejection performance of composite membranes [J]. CIESC Journal, 2018, 69(5): 2318-2326. |
[11] | MA Yanbing, LIU Hui'e, CHEN Shuang, DING Chuanqin. Facile synthesis of carbon nanotubes-graphene aerogels and its adsorption property for emulsified oil in water [J]. CIESC Journal, 2018, 69(4): 1508-1517. |
[12] | LIU Zhuang, WANG Wei, JU Xiaojie, XIE Rui, CHU Liangyin. Carbon-based membranes with confinement effect for mass transport: from carbon nano-tube membranes to graphene membranes [J]. CIESC Journal, 2018, 69(1): 166-174. |
[13] | LI Chenyang, FENG Miao, CUI Haifeng, CAO Guiping, LÜ Hui, CHEN Rongqi. Preparation of carbon nanotube catalyst on structure-modified cordierite monolith for polystyrene hydrogenation [J]. CIESC Journal, 2017, 68(7): 2746-2754. |
[14] | SUN Yingying, CHEN Lin, XU Hongfei, LIN Jun, DU Xiaoze. Derivation of thermal conductive equation of hybrid filled composites [J]. CIESC Journal, 2015, 66(S1): 359-364. |
[15] | WANG Haiyang, DU Yanni, LI Zhenfang, SONG Xiaopeng, TAN Duanming, GONG Junbo. Crystallization process and growth mechanism for spherical products of clopidogrel sulfate [J]. CIESC Journal, 2015, 66(9): 3633-3639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||