CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4367-4382.DOI: 10.11949/0438-1157.20230941
• Reviews and monographs •
Haonan CHEN(), Xiaohong HU(), Longlong MA, Qi ZHANG()
Received:
2023-09-08
Revised:
2023-11-15
Online:
2024-01-22
Published:
2023-11-25
Contact:
Xiaohong HU, Qi ZHANG
通讯作者:
胡晓虹,张琦
作者简介:
陈浩楠(1999—),男,硕士研究生,2465042783@qq.com
基金资助:
CLC Number:
Haonan CHEN, Xiaohong HU, Longlong MA, Qi ZHANG. Study of typical chemical cleavage during catalytic oxidation of lignin[J]. CIESC Journal, 2023, 74(11): 4367-4382.
陈浩楠, 胡晓虹, 马隆龙, 张琦. 木质素催化氧化过程中典型化学键断键研究[J]. 化工学报, 2023, 74(11): 4367-4382.
Add to citation manager EndNote|Ris|BibTeX
木质素类型 | 提取过程 | 木质素分子量 | 优点 | 缺点 |
---|---|---|---|---|
硫酸盐木质素 | NaOH和Na2S蒸煮,温度在150~180℃ | 1000~3000 Da | 适用于木材生物质,灰分低,最佳提取木质素方法 | 含硫量及缩聚程度高 |
碱木质素 | NaOH处理,温度在90~150℃ | 1000~3000 Da | 适用于非木材生物质,不含硫,灰分低 | 碱消耗量大,木质素结构易改变 |
木质素磺酸盐 | 亚硫酸盐[Na2SO3、CaSO3、(NH4)2SO3等]蒸煮,温度在150~180℃ | 5700~61000 Da | 适用于木材生物质,低成本,水溶性好 | 含硫/灰分多及缩聚程度高 |
有机溶剂木质素 | 有机溶液萃取,温度在90~210℃ | 3000~4500 Da | 不含硫,可溶于碱性溶液,木质素结构改变小 | 有机溶液需要回收,且成本高,难溶于水 |
热解木质素 | 高温加热 | 300~600 Da | 处理时间短,不含硫 | 温度高,消耗能量大 |
酶解木质素 | 酶或者真菌处理 | 4500~9500 Da | 不含硫 | 处理时间长 |
Table 1 Comparison of different extraction methods of lignin
木质素类型 | 提取过程 | 木质素分子量 | 优点 | 缺点 |
---|---|---|---|---|
硫酸盐木质素 | NaOH和Na2S蒸煮,温度在150~180℃ | 1000~3000 Da | 适用于木材生物质,灰分低,最佳提取木质素方法 | 含硫量及缩聚程度高 |
碱木质素 | NaOH处理,温度在90~150℃ | 1000~3000 Da | 适用于非木材生物质,不含硫,灰分低 | 碱消耗量大,木质素结构易改变 |
木质素磺酸盐 | 亚硫酸盐[Na2SO3、CaSO3、(NH4)2SO3等]蒸煮,温度在150~180℃ | 5700~61000 Da | 适用于木材生物质,低成本,水溶性好 | 含硫/灰分多及缩聚程度高 |
有机溶剂木质素 | 有机溶液萃取,温度在90~210℃ | 3000~4500 Da | 不含硫,可溶于碱性溶液,木质素结构改变小 | 有机溶液需要回收,且成本高,难溶于水 |
热解木质素 | 高温加热 | 300~600 Da | 处理时间短,不含硫 | 温度高,消耗能量大 |
酶解木质素 | 酶或者真菌处理 | 4500~9500 Da | 不含硫 | 处理时间长 |
方法 | 优势 | 局限 | |
---|---|---|---|
热处理法 | 热解 | 反应迅速,易于操作 | 产物选择性低,反应条件苛刻,易积炭 |
气化 | 简单,反应迅速 | 能耗大,产生焦油 | |
化学处理法 | 酸催化 | 有效断裂各种键,低成本 | 环境污染,具有腐蚀性 |
碱催化 | 有效断裂各种键,低成本 | 环境污染,可能导致再聚合 | |
金属催化 | 高选择性 | 低转化率,价格贵 | |
离子液体催化 | 可调整反应,适应性好 | 难以分离产物 | |
生物处理法 | 无毒害,成本低 | 反应速率慢,效率低 | |
微波辅助解聚 | 可精确控制操作,避免表面发热 | 高能耗 |
Table 2 Characterization of different lignin depolymerization methods
方法 | 优势 | 局限 | |
---|---|---|---|
热处理法 | 热解 | 反应迅速,易于操作 | 产物选择性低,反应条件苛刻,易积炭 |
气化 | 简单,反应迅速 | 能耗大,产生焦油 | |
化学处理法 | 酸催化 | 有效断裂各种键,低成本 | 环境污染,具有腐蚀性 |
碱催化 | 有效断裂各种键,低成本 | 环境污染,可能导致再聚合 | |
金属催化 | 高选择性 | 低转化率,价格贵 | |
离子液体催化 | 可调整反应,适应性好 | 难以分离产物 | |
生物处理法 | 无毒害,成本低 | 反应速率慢,效率低 | |
微波辅助解聚 | 可精确控制操作,避免表面发热 | 高能耗 |
氧化剂 | 优点 | 缺点 |
---|---|---|
氧气, 过氧化氢 | 反应温和易控制,低成本, 环保,反应条件易控制 | 需较长反应时间和较高温度 |
空气 | 成本低,环保,可控性高 | 反应时间长,氧化性能相对低 |
硝基苯 | 氧化性好,使用简单 | 有毒,安全风险高,危害环境 |
氯氧化物 | 高效氧化性能,漂白效果好 | 环境污染,废物难处理 |
臭氧 | 高效氧化性能,快速反应, 氧化副产物为氧气 | 设备成本高,高浓度下刺激性强 |
Table 3 Comparison of advantages and disadvantages of different oxidants
氧化剂 | 优点 | 缺点 |
---|---|---|
氧气, 过氧化氢 | 反应温和易控制,低成本, 环保,反应条件易控制 | 需较长反应时间和较高温度 |
空气 | 成本低,环保,可控性高 | 反应时间长,氧化性能相对低 |
硝基苯 | 氧化性好,使用简单 | 有毒,安全风险高,危害环境 |
氯氧化物 | 高效氧化性能,漂白效果好 | 环境污染,废物难处理 |
臭氧 | 高效氧化性能,快速反应, 氧化副产物为氧气 | 设备成本高,高浓度下刺激性强 |
1 | Zhang C F, Shen X J, Jin Y C, et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization[J]. Chemical Reviews, 2023, 123(8): 4510-4601. |
2 | Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. |
3 | Kleinert M, Barth T. Phenols from lignin[J]. Chemical Engineering & Technology, 2008, 31(5): 736-745. |
4 | Shuai L, Saha B. Towards high-yield lignin monomer production[J]. Green Chemistry, 2017, 19(16): 3752-3758. |
5 | Xu C P, Arancon R A D, Labidi J, et al. Lignin depolymerisation strategies: towards valuable chemicals and fuels[J]. Chemical Society Reviews, 2014, 43(22): 7485-7500. |
6 | Chio C, Sain M, Qin W S. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
7 | Wang H L, Ruan H, Pei H S, et al. Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation[J]. Green Chemistry, 2015, 17(12): 5131-5135. |
8 | Chatel G, Rogers R D. Review: oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 322-339. |
9 | Cheng C B, Wang J Z, Shen D K, et al. Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: a review[J]. Polymers, 2017, 9(12): 240. |
10 | Ma R S, Guo M, Zhang X. Recent advances in oxidative valorization of lignin[J]. Catalysis Today, 2018, 302: 50-60. |
11 | Ma R S, Xu Y, Zhang X. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production[J]. ChemSusChem, 2015, 8(1): 24-51. |
12 | Vangeel T, Schutyser W, Renders T, et al. Perspective on lignin oxidation: advances, challenges, and future directions[J]. Topics in Current Chemistry, 2018, 376(4): 30. |
13 | Balakshin M, Capanema E. On the quantification of lignin hydroxyl groups with P-31 and C-13 NMR spectroscopy[J]. Journal of Wood Chemistry and Technology, 2015, 35(3): 220-237. |
14 | Carvajal J C, Gómez Á, Cardona C A. Comparison of lignin extraction processes: economic and environmental assessment[J]. Bioresource Technology, 2016, 214: 468-476. |
15 | 汪俊豪. 木质素磺酸盐预处理及应用的研究[D]. 天津: 天津科技大学, 2022. |
Wang J H. Study on pretreatment and application of lignosulfonate[D]. Tianjin: Tianjin University of Science & Technology, 2022. | |
16 | Behling R, Valange S, Chatel G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? what limitations? what trends?[J]. Green Chemistry, 2016, 18(7): 1839-1854. |
17 | Tolbert A, Akinosho H, Khunsupat R, et al. Characterization and analysis of the molecular weight of lignin for biorefining studies[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(6): 836-856. |
18 | 胡育珍, 张琦, 王晨光, 等. 木质素催化氧化解聚研究进展[J]. 高校化学工程学报, 2019, 33(3): 505-515. |
Hu Y Z, Zhang Q, Wang C G, et al. Progress in catalytic oxidative depolymerization of lignin[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 505-515. | |
19 | 王宇鹏. 木质素解聚及其结构的研究[D]. 北京: 北京化工大学, 2022. |
Wang Y P. Study on depolymerization and structure of lignin[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
20 | Ahmad E, Jäger N, Apfelbacher A, et al. Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor[J]. Fuel Processing Technology, 2018, 171: 277-286. |
21 | Tong X L, Zheng J X, Xue S, et al. High-entropy materials as the catalysts for valorization of biomass and biomass-derived platform compounds[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(28): 10203-10218. |
22 | Yamaguchi A, Hiyoshi N, Sato O, et al. Gasification of organosolv-lignin over charcoal supported noble metal salt catalysts in supercritical water[J]. Topics in Catalysis, 2012, 55(11): 889-896. |
23 | 闫景春. 基于铁基钙钛矿载氧体的生物质化学链催化气化特性研究[D]. 南京: 东南大学, 2021. |
Yan J C. Study on catalytic gasification characteristics of biomass chemical chain based on iron-based perovskite oxygen carrier[D]. Nanjing: Southeast University, 2021. | |
24 | Wang Y N, Wei L H, Hou Q D, et al. A review on catalytic depolymerization of lignin towards high-value chemicals: solvent and catalyst[J]. Fermentation, 2023, 9(4): 386. |
25 | Zhu D C, Liang N A, Zhang R X, et al. Insight into depolymerization mechanism of bacterial laccase for lignin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12920-12933. |
26 | Yao S G, Mobley J K, Ralph J, et al. Mechanochemical treatment facilitates two-step oxidative depolymerization of kraft lignin[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5990-5998. |
27 | Zhu G D, Jin D X, Zhao L S, et al. Microwave-assisted selective cleavage of C α —C β bond for lignin depolymerization[J]. Fuel Processing Technology, 2017, 161: 155-161. |
28 | 沈晓骏, 黄攀丽, 文甲龙, 等. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178. |
Shen X J, Huang P L, Wen J L, et al. Research status of lignin oxidative and reductive depolymerization[J]. Progress in Chemistry, 2017, 29(1): 162-178. | |
29 | More A, Elder T, Jiang Z H. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids[J]. Holzforschung, 2021, 75(9): 806-823. |
30 | Yamamura M, Hattori T, Suzuki S, et al. Microscale alkaline nitrobenzene oxidation method for high-throughput determination of lignin aromatic components[J]. Plant Biotechnology, 2010, 27(4): 305-310. |
31 | Wang Y Y, Sun S N, Li F F, et al. Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield[J]. Industrial Crops and Products, 2018, 116: 116-121. |
32 | Kumar A, Biswas B, Kaur R, et al. Hydrothermal oxidative valorisation of lignin into functional chemicals: a review[J]. Bioresource Technology, 2021, 342: 126016. |
33 | Irmak S, Kang J, Wilkins M. Depolymerization of lignin by wet air oxidation[J]. Bioresource Technology Reports, 2020, 9: 100377. |
34 | D'Anna F, Marullo S, Vitale P, et al. The effect of the cation π-surface area on the 3D organization and catalytic ability of imidazolium-based ionic liquids[J]. European Journal of Organic Chemistry, 2011, 2011(28): 5681-5689. |
35 | Xu X W, Li P H, Zhong Y D, et al. Review on the oxidative catalysis methods of converting lignin into vanillin[J]. International Journal of Biological Macromolecules, 2023, 243: 125203. |
36 | Wang M, Li L H, Lu J M, et al. Acid promoted C—C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst[J]. Green Chemistry, 2017, 19(3): 702-706. |
37 | Hu Y Z, Yan L, Zhao X L, et al. Mild selective oxidative cleavage of lignin C—C bonds over a copper catalyst in water[J]. Green Chemistry, 2021, 23(18): 7030-7040. |
38 | Ma Y Y, Du Z T, Liu J X, et al. Selective oxidative C—C bond cleavage of a lignin model compound in the presence of acetic acid with a vanadium catalyst[J]. Green Chemistry, 2015, 17(11): 4968-4973. |
39 | Hanson S K, Wu R L, Silks L A. C—C or C—O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst[J]. Angewandte Chemie International Edition, 2012, 51(14): 3410-3413. |
40 | Jiang Y Y, Yan L, Yu H Z, et al. Mechanism of vanadium-catalyzed selective C—O and C—C cleavage of lignin model compound[J]. ACS Catalysis, 2016, 6(7): 4399-4410. |
41 | Wang M, Ma J P, Liu H F, et al. Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C—C bond[J]. ACS Catalysis, 2018, 8(3): 2129-2165. |
42 | Nichols J M, Bishop L M, Bergman R G, et al. Catalytic C—O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers[J]. Journal of the American Chemical Society, 2010, 132(36): 12554-12555. |
43 | Song Q, Wang F, Cai J Y, et al. Lignindepolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6(3): 994-1007. |
44 | Zhou M H, Tang C J, Xia H H, et al. Ni-based MOFs catalytic oxidative cleavage of lignin models and lignosulfonate under oxygen atmosphere[J]. Fuel, 2022, 320: 123993. |
45 | Kim S, Chmely S C, Nimlos M R, et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins[J]. The Journal of Physical Chemistry Letters, 2011, 2(22): 2846-2852. |
46 | Nguyen J D, Matsuura B S, Stephenson C R J. A photochemical strategy for lignin degradation at room temperature[J]. Journal of the American Chemical Society, 2014, 136(4): 1218-1221. |
47 | Zhang G Q, Scott B L, Wu R L, et al. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands[J]. Inorganic Chemistry, 2012, 51(13): 7354-7361. |
48 | Zhang C F, Li H J, Lu J M, et al. Promoting lignin depolymerization and restraining the condensation via an oxidation-hydrogenation strategy[J]. ACS Catalysis, 2017, 7(5): 3419-3429. |
49 | Deuss P J, Scott M, Tran F, et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin[J]. Journal of the American Chemical Society, 2015, 137(23): 7456-7467. |
50 | Wang M, Lu J M, Zhang X C, et al. Two-step, catalytic C—C bond oxidative cleavage process converts lignin models and extracts to aromatic acids[J]. ACS Catalysis, 2016, 6(9): 6086-6090. |
51 | Rahimi A, Ulbrich A, Coon J J, et al. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature, 2014, 515(7526): 249-252. |
52 | Lancefield C S, Ojo O S, Tran F, et al. Isolation of functionalized phenolic monomers through selective oxidation and C—O bond cleavage of the β-O-4 linkages in lignin[J]. Angewandte Chemie (International Ed. in English), 2015, 54(1): 258-262. |
53 | Yang W S, Du X, Liu W, et al. Highly efficient lignin depolymerization via effective inhibition of condensation during polyoxometalate-mediated oxidation[J]. Energy & Fuels, 2019, 33(7): 6483-6490. |
54 | Rawat S, Gupta P, Singh B, et al. Molybdenum-catalyzed oxidative depolymerization of alkali lignin: selective production of vanillin[J]. Applied Catalysis A: General, 2020, 598: 117567. |
55 | Guo S Y, Tong X L, Meng L W, et al. A sustainable iron-catalyzed aerobic oxidative C—C and C—O bond cleavage of a lignin model to phenol and methyl benzoate[J]. Catalysis Science & Technology, 2023, 13(6): 1748-1754. |
56 | Liu M Y, Zhang Z R, Shen X J, et al. Stepwise degradation of hydroxyl compounds to aldehydes via successive C—C bond cleavage[J]. Chemical Communications, 2019, 55(7): 925-928. |
57 | Ninomiya K, Ochiai K, Eguchi M, et al. Oxidative depolymerization potential of biorefinery lignin obtained by ionic liquid pretreatment and subsequent enzymatic saccharification of eucalyptus[J]. Industrial Crops and Products, 2018, 111: 457-461. |
58 | Salar-García M J, Ortiz-Martínez V M, Hernández-Fernández F J, et al. Ionic liquid technology to recover volatile organic compounds (VOCs)[J]. Journal of Hazardous Materials, 2017, 321: 484-499. |
59 | Cox B J, Ekerdt J G. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst[J]. Bioresource Technology, 2012, 118: 584-588. |
60 | Badgujar K C, Bhanage B M. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges[J]. Bioresource Technology, 2015, 178: 2-18. |
61 | Dai J H, Patti A F, Saito K. Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids[J]. Tetrahedron Letters, 2016, 57(45): 4945-4951. |
62 | Prado R, Erdocia X, de Gregorio G F, et al. Willow lignin oxidation and depolymerization under low cost ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5277-5288. |
63 | Yang Y Y, Fan H L, Meng Q L, et al. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds[J]. Chemical Communications, 2017, 53(63): 8850-8853. |
64 | Gao H L, Wang J B, Liu M X, et al. Enhanced oxidative depolymerization of lignin in cooperative imidazolium-based ionic liquid binary mixtures[J]. Bioresource Technology, 2022, 357: 127333. |
65 | Kang Y, Lu X M, Zhang G J, et al. Metal-free photochemical degradation of lignin-derived aryl ethers and lignin by autologous radicals through ionic liquid induction[J]. ChemSusChem, 2019, 12(17): 4005-4013. |
66 | Mehta M J, Kulshrestha A, Sharma S, et al. Room temperature depolymerization of lignin using a protic and metal based ionic liquid system: an efficient method of catalytic conversion and value addition[J]. Green Chemistry, 2021, 23(3): 1240-1247. |
67 | Wang M, Wang F. Lignin: catalytic scissoring of lignin into aryl monomers[J]. Advanced Materials, 2019, 31(50): e1901866. |
68 | Zhang C F, Wang F. Sell a dummy: adjacent functional group modification strategy for the catalytic cleavage of lignin β-O-4 linkage[J]. Chinese Journal of Catalysis, 2017, 38(7): 1102-1107. |
69 | Hou T, Luo N, Li H, et al. Yin and yang dual characters of CuO x clusters for C—C bond oxidationdriven by visible light[J]. ACS Catalysis, 2017, 7(6): 3850-3859. |
70 | Liu H F, Li H J, Lu J M, et al. Photocatalytic cleavage of C—C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π-π stacking interaction[J]. ACS Catalysis, 2018, 8(6): 4761-4771. |
71 | Vom Stein T, den Hartog T, Buendia J, et al. Ruthenium-catalyzed C—C bond cleavage in lignin model substrates[J]. Angewandte Chemie (International Ed. in English), 2015, 54(20): 5859-5863. |
72 | Dabral S, Hernández J G, Kamer P C J, et al. Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin[J]. ChemSusChem, 2017, 10(13): 2707-2713. |
73 | Sedai B, Baker R T. Copper catalysts for selective C—C bond cleavage of beta-O-4 lignin model compounds[J]. Advanced Synthesis & Catalysis, 2014, 356(17): 3563-3574. |
74 | Kim S A, Kim S E, Kim Y K, et al. Copper-catalyzed oxidative cleavage of the C—C bonds of β-alkoxy alcohols and β-1 compounds[J]. ACS Omega, 2020, 5(49): 31684-31691. |
75 | Liu H F, Li H J, Luo N C, et al. Visible-light-induced oxidative lignin C—C bond cleavage to aldehydes using vanadium catalysts[J]. ACS Catalysis, 2020, 10(1): 632-643. |
76 | Shen X J, Xin Y, Liu H Z, et al. Product-oriented direct cleavage of chemical linkages in lignin[J]. ChemSusChem, 2020, 13(17): 4367-4381. |
77 | Huang X M, Ludenhoff J M, Dirks M, et al. Selective production of biobased phenol from lignocellulose-derived alkylmethoxyphenols[J]. ACS Catalysis, 2018, 8(12): 11184-11190. |
78 | Zhang J G, Lombardo L, Gözaydın G, et al. Single-step conversion of lignin monomers to phenol: bridging the gap between lignin and high-value chemicals[J]. Chinese Journal of Catalysis, 2018, 39(9): 1445-1452. |
79 | Wang Y L, Wang Q Y, He J H, et al. Highly effective C—C bond cleavage of lignin model compounds[J]. Green Chemistry, 2017, 19(13): 3135-3141 |
80 | Wang M, Liu M J, Li H J, et al. Dealkylation of lignin to phenol via oxidation-hydrogenation strategy[J]. ACS Catalysis, 2018, 8(8): 6837-6843. |
81 | Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols[J]. ChemSusChem, 2008, 1(8/9): 763-769. |
82 | 兰海瑞. 应用两种杂多酸催化氧化木质素制备芳香化合物[D]. 昌吉: 昌吉学院, 2019. |
Lan H R. Preparation of aromatic compounds by oxidation of lignin catalyzed by two heteropolyacids[D]. Changji: Changji College, 2019. | |
83 | Ren X R, Wang P, Han X Y, et al. Depolymerization of lignin to aromatics by selectively oxidizing cleavage of C—C and C—O bonds using CuCl2/polybenzoxazine catalysts at room temperature[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6548-6556. |
84 | Salonen H E P, Mecke C P A, Karjomaa M I, et al. Copper catalyzed alcohol oxidation and cleavage of β-O-4 lignin model systems: from development to mechanistic examination[J]. ChemistrySelect, 2018, 3(44): 12446-12454. |
85 | Xiang Q, Lee Y Y. Production of oxychemicals from precipitated hardwood lignin[J]. Applied Biochemistry and Biotechnology, 2001, 91: 71-80. |
86 | Sales F G, Abreu C A M, Pereira J. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production[J]. Brazilian Journal of Chemical Engineering, 2004, 21(2): 211-218. |
87 | Deng W P, Zhang H X, Wu X J, et al. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles[J]. Green Chemistry, 2015, 17(11): 5009-5018. |
88 | Song W L, Dong Q M, Hong L A, et al. Activating molecular oxygen with Au/CeO2 for the conversion of lignin model compounds and organosolv lignin[J]. RSC Advances, 2019, 9(53): 31070-31077. |
89 | Cabral Almada C, Kazachenko A, Fongarland P, et al. Supported-metal catalysts in upgrading lignin to aromatics by oxidative depolymerization[J]. Catalysts, 2021, 11(4): 467. |
90 | Deng H B, Lin L, Liu S J. Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes[J]. Energy & Fuels, 2010, 24(9): 4797-4802. |
91 | Deng H B, Lin L, Sun Y, et al. Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process[J]. Energy & Fuels, 2009, 23(1): 19-24. |
92 | Abdelaziz O Y, Meier S, Prothmann J, et al. Oxidative depolymerisation of lignosulphonate lignin into low-molecular-weight products with Cu-Mn/δ-Al2O3 [J]. Topics in Catalysis, 2019, 62(7): 639-648. |
93 | Prado R, Erdocia X, Labidi J. Effect of the photocatalytic activity of TiO2 on lignin depolymerization[J]. Chemosphere, 2013, 91(9): 1355-1361. |
94 | 刘苗苗. 在Pb/PbO2和Cu电极间电催化氧化还原降解碱性竹木质素制备有价值化学品的研究[D]. 天津: 河北工业大学, 2020. |
Liu M M. Study on the preparation of valuable chemicals by electrocatalytic redox degradation of alkaline bamboo lignin between Pb/PbO2 and Cu electrode[D]. Tianjin: Hebei University of Technology, 2020. | |
95 | Wang Y S, Yang F, Liu Z H, et al. Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution[J]. Catalysis Communications, 2015, 67: 49-53. |
96 | Abdelaziz O Y, Clemmensen I, Meier S, et al. On the oxidative valorization of lignin to high-value chemicals: a critical review of opportunities and challenges[J]. ChemSusChem, 2022, 15(20): e202201232. |
97 | van Aelst K, van Sinay E, Vangeel T, et al. Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil[J]. Chemical Science, 2020, 11(42): 11498-11508. |
98 | Li K N, Al-Rudainy B, Sun M Z, et al. Membrane separation of the base-catalyzed depolymerization of black liquor retentate for low-molecular-mass compound production[J]. Membranes, 2019, 9(8): 102. |
99 | Gomes E D, Rodrigues A E. Recovery of vanillin from kraft lignin depolymerization with water as desorption eluent[J]. Separation and Purification Technology, 2020, 239: 116551. |
100 | Alherech M, Omolabake S, Holland C M, et al. From lignin to valuable aromatic chemicals: lignin depolymerization and monomer separation via centrifugal partition chromatography[J]. ACS Central Science, 2021, 7(11): 1831-1837. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[7] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[10] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[11] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[12] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[13] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[14] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[15] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||