CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 589-596.DOI: 10.11949/0438-1157.20200962
• Energy and environmental engineering • Previous Articles Next Articles
ZHANG Jin1(),GUO Zhibin2,ZHANG Jujia1,WANG Haining1,XIANG Yan1,JIANG San Ping3,LU Shanfu1()
Received:
2020-07-20
Revised:
2020-09-28
Online:
2021-01-05
Published:
2021-01-05
Contact:
LU Shanfu
张劲1(),郭志斌2,张巨佳1,王海宁1,相艳1,蒋三平3,卢善富1()
通讯作者:
卢善富
作者简介:
张劲(1987—),男,博士,讲师,基金资助:
CLC Number:
ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596.
张劲, 郭志斌, 张巨佳, 王海宁, 相艳, 蒋三平, 卢善富. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Picture of scale-up fabrication of PES-PVP composite membrane via casting method, and the width of the membrane is 40 cm(a); the stress-strain curves of the PES-PVP composite membrane and PBI membrane before and after PA uptake (b); the PA uptake level and volume swelling ratio of PA saturated PES-PVP and PBI membranes (c); the proton conductivity of PA/PES-PVP composite membrane and PA/PBI membrane under different temperature and unhydrous conditions (d)
Fig.3 Polarization curves of PA/PES-PVP membrane fuel cell with active area of 200 cm2 at 150℃ under H2/O2 with stoichiometry ratio of 3 and 9, respectively, without backpressure (a); cell performance comparison among PA/PES-PVP MEA (BUAA HT-MEA) and two commercial HT-PEM MEAs (Advent and DPS) with active area of 165 cm2 under 150℃ and the stoichiometry ratio of H2 and air is 2 and 5, respectively, without backpressure (b)
Fig.4 The durability test of PA/PES-PVP membrane fuel cell with a constant load of 200 mA·cm-2 at 150℃, the stiochimitry of H2 and air is 3 and 6,respectively, without backpressure
Fig.5 Bipolar plate of anode and cathode (a), liquid cooling channel [(b),(c)]; picture of the fuel cell stack test (d); stability of fuel cell stack with 3 MEAs (e); stack performance with 20 MEAs (f)(testing conditions: active area 200 cm2, anode H2, cathode air,λH2=3, λair=9 without backpressure; temperature is 150℃)
1 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320. |
Wang C, Wang S B, Zhang J B, et al. The key materials and components for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2015, 27(2/3): 310-320. | |
2 | Liang Y, Zhang H, Zhang J, et al. Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: an effective cathode catalyst for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2020, 332: 135397. |
3 | 万忠民, 全文祥, 阎瀚章, 等. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70: 329-335. |
Wan Z M, Quan W X, Yan H Z, et al. Performance analysis of fuel cell system for unmanned aerial vehicle [J]. CIESC Journal, 2019, 70: 329-335. | |
4 | Zhang J, Liu J, Lu S, et al. Ion-exchange-induced selective etching for the synthesis of amino-functionalized hollow mesoporous silica for elevated-high-temperature fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9: 31922-31930. |
5 | 李庆, 叶强, 杨晓光. 电解重整式甲醇燃料电池系统[J]. 化工学报, 2013, 64(4): 1373-1379. |
Li Q, Ye Q, Yang X G. PEMFC system incorporating a methanol electrolytic reformer[J]. CIESC Journal, 2013, 64(4): 1373-1379. | |
6 | Wang S, Jiang S P. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4(2): 163-166. |
7 | Cheng Y, Zhang J, Lu S F, et al. Significantly enhanced performance of direct methanol fuel cells at elevated temperatures[J]. Journal of Power Sources, 2020, 450: 227620. |
8 | 李微微, 尚玉明, 王树博, 等. AB-PBI分子量对高温膜燃料电池膜电极性能的影响[J]. 化工学报, 2011, 62(2): 131-134. |
Li W W, Shang Y M, Wang S B, et al. Effect of polymer molecular weight of ABPBI on membrane electrode assembly of high temperature proton exchange membrane fuel cells[J]. CIESC Journal, 2011, 62(2): 131-134. | |
9 | Huang Y J, Li Q F, Anfimova T V, et al. Indium doped niobium phosphates as intermediate temperature proton conductors[J]. International Journal Hydrogen Energy, 2013, 38(5): 2464-2470. |
10 | 卢善富, 徐鑫, 张劲, 等. 燃料电池用磷酸掺杂高温质子交换膜研究进展[J]. 中国科学: 化学, 2017, 47(5): 565-572. |
Lu S F, Xu X, Zhang J, et al. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells[J]. Scientia Sinica Chimica, 2017, 47(5): 565-572. | |
11 | Zhang J, Aili D, Lu S F, et al. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020: 9089405. |
12 | Zhang J, Xiang Y, Lu S F, et al. High temperature polymer electrolyte membrane fuel cells for integrated fuel cell - methanol reformer power systems: a critical review[J]. Advanced Sustainable Systems, 2018, 2: 1700184. |
13 | Yan W R, Xiang Y, Zhang J, et al. Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures[J]. Advanced Sustainable Systems, 2020, 4: 2000065. |
14 | Guo Z B, Xu X, Xiang Y, et al. New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF-PVP blended polymers[J]. Journal of Materials Chemistry A, 2015, 3: 148-155. |
15 | Guo Z B, Xiu R J, Lu S F, et al. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. Journal of Materials Chemistry A, 2015, 3: 8847-8854. |
16 | Lu S F, Xiu R J, Xu X, et al. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2014, 464: 1-7. |
17 | Zhang J J, Zhang J, Bai H J, et al. A new high temperature polymer electrolyte membrane based on trifunctional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503. |
18 | Bai H J, Peng H G, Xiang Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219. |
19 | 赵伟辰, 徐鑫, 白慧娟, 等. 自交联聚乙烯亚胺-聚砜高温质子交换膜研究[J]. 化学学报, 2020, 78(1): 69-75. |
Zhao W C, Xu X, Bai H J, et al. Self-crosslinked polyethyleneimine-polysulfone membrane for high temperature proton exchange membrane[J]. Acta Chimica Sinica, 2020, 78(1): 69-75. | |
20 | 郝金凯, 姜永燚, 王禛, 等. 高温质子交换膜燃料电池用聚苯并咪唑/聚乙烯基苄基交联膜的制备与性能研究[J]. 电化学, 2015, 21(5): 441-448. |
Hao J K, Jiang Y Y, Wang Z, et al. Preparations and properties of polybenzimizaole/polyvinylbenzyl crosslinked composite membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2015, 21(5): 441-448. | |
21 | Bai H J, Wang H N, Zhang J, et al. Simultaneously enhancing ionic conduction and mechanical strength of poly (ether sulfones)-poly(vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application[J]. Journal of Membrane Science, 2018, 558: 26-33. |
22 | Zhang J, Lu S F, Zhu H J, et al. Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells[J]. RSC Advances, 2016, 6: 86575-86585. |
23 | Xu X, Wang H N, Lu S F, et al. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 286: 458-463. |
24 | 卢善富, 相艳, 蒋三平. 一种燃料电池用的高温质子交换膜及制备方法: 102376961A[P]. 2012-03-14. |
Lu S F, Xiang Y, Jiang S P. A high temperature proton exchange membrane and its preparation method: 102376961A[P]. 2012-03-14. | |
25 | 姚东梅, 张玮琦, 徐谦, 等. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31 (2/3): 455-463. |
Yao D M, Zhang W Q, Xu Q, et al. Membrane electrode assembly for high temperature polymer electrolyte membrane fuel cell based on phosphoric-acid doped polybenzimidazole[J]. Progress in Chemistry, 2019, 31 (2/3): 455-463. | |
26 | Cheng Y, Zhang J, Lu S F, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200—250℃[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22487-22499. |
27 | Zhang J J, Bai H, Yan W, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. Journal of the Electrochemical Society, 2020, 167(11): 114501. |
28 | Oono Y, Sounai A, Hori M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373. |
29 | Oono Y, Sounai A, Hori M. Prolongation of lifetime of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 241: 87-93. |
30 | 胡经纬, 张华民, 翟云峰, 等. 高温PEMFC的性能衰减研究与一维数值模拟[J]. 电源技术, 2006, 30(12): 977-981. |
Hu J W, Zhang H M, Zhai Y F, et al. Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one dimension numerical modeling[J]. Chinese Journal of Power Sources, 2006, 30(12): 977-981. | |
31 | Zhang J, Aili D, Bradley J, et al. In situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures[J]. Journal of the Electrochemical Society, 2017, 164 (14): F1615-F1625. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[13] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||