CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 924-935.DOI: 10.11949/0438-1157.20231345
• Process system engineering • Previous Articles Next Articles
Yibin DONG1(), Jingchao XIONG2, Jingyu WANG1, Shoukang WANG1, Yafei WANG1, Qunxing HUANG1()
Received:
2023-12-18
Revised:
2024-02-23
Online:
2024-05-11
Published:
2024-03-25
Contact:
Qunxing HUANG
董益斌1(), 熊敬超2, 王敬宇1, 汪守康1, 王亚飞1, 黄群星1()
通讯作者:
黄群星
作者简介:
董益斌(1999—),男,硕士研究生, 22160492@zju.edu.cn
基金资助:
CLC Number:
Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization[J]. CIESC Journal, 2024, 75(3): 924-935.
董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
探测距离/m | 0~40 | 距离分辨率/cm | 1 cm |
保护距离 | ≥40 m@70%反射率 | 水平场视角/(°) | 270 |
数据采样率/kHz | 45 | 测量精度/cm | ±2 |
波长/nm | 940 | 工作温度/℃ | -25~60 |
Table 1 Main technical parameters of LiDAR
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
探测距离/m | 0~40 | 距离分辨率/cm | 1 cm |
保护距离 | ≥40 m@70%反射率 | 水平场视角/(°) | 270 |
数据采样率/kHz | 45 | 测量精度/cm | ±2 |
波长/nm | 940 | 工作温度/℃ | -25~60 |
编号 | 实际体积 Vr/cm3 | 测试1 V1/cm3 | 测试2 V2/cm3 | 测试3 V3/cm3 | 平均误差/% | 标准差/cm3 |
---|---|---|---|---|---|---|
1 | 5713.00 | 5825.65 | 5798.36 | 5905.78 | 2.25 | 45.59 |
2 | 4438.00 | 4521.52 | 4568.32 | 4592.24 | 2.71 | 29.37 |
3 | 6192.00 | 6249.37 | 6298.47 | 6258.63 | 1.23 | 21.30 |
4 | 4952.00 | 5032.18 | 5088.69 | 5074.95 | 2.25 | 24.06 |
5 | 5087.00 | 5198.61 | 5154.27 | 5225.52 | 2.05 | 29.37 |
Table 2 Feeding amount detection error
编号 | 实际体积 Vr/cm3 | 测试1 V1/cm3 | 测试2 V2/cm3 | 测试3 V3/cm3 | 平均误差/% | 标准差/cm3 |
---|---|---|---|---|---|---|
1 | 5713.00 | 5825.65 | 5798.36 | 5905.78 | 2.25 | 45.59 |
2 | 4438.00 | 4521.52 | 4568.32 | 4592.24 | 2.71 | 29.37 |
3 | 6192.00 | 6249.37 | 6298.47 | 6258.63 | 1.23 | 21.30 |
4 | 4952.00 | 5032.18 | 5088.69 | 5074.95 | 2.25 | 24.06 |
5 | 5087.00 | 5198.61 | 5154.27 | 5225.52 | 2.05 | 29.37 |
类别 | 名称 | 符号 | 单位 |
---|---|---|---|
输入参数 | |||
状态参数 | 炉室差压左 | PA1 | MPa |
炉室差压右 | PA2 | MPa | |
燃烧器下部压力左2 | PB2 | Pa | |
燃烧器下部压力左1 | PB1 | Pa | |
燃烧器下部压力右1 | PB3 | Pa | |
燃烧器下部压力右2 | PB4 | Pa | |
主汽流量 | F | t/h | |
总给水流量 | FW | m3/h | |
可控参数 | 4#皮带频率 | S4 | Hz |
3#皮带频率 | S3 | Hz | |
2#皮带频率 | S2 | Hz | |
1#皮带频率 | S1 | Hz | |
一次风机总流量 | FA | m3/h | |
二次风总流量左 | FA1 | m3/h | |
二次风总流量右 | FA2 | m3/h | |
雷达反馈给料参数 | 4#皮带给料流量 | FS4 | m3/s |
3#皮带给料流量 | FS3 | m3/s | |
2#皮带给料流量 | FS2 | m3/s | |
1#皮带给料流量 | FS1 | m3/s | |
输出参数 | 燃烧室温度 | T | ℃ |
主蒸汽压力 | p | MPa | |
出口烟气含氧量 | O | % |
Table 3 Boiler parameters final selection
类别 | 名称 | 符号 | 单位 |
---|---|---|---|
输入参数 | |||
状态参数 | 炉室差压左 | PA1 | MPa |
炉室差压右 | PA2 | MPa | |
燃烧器下部压力左2 | PB2 | Pa | |
燃烧器下部压力左1 | PB1 | Pa | |
燃烧器下部压力右1 | PB3 | Pa | |
燃烧器下部压力右2 | PB4 | Pa | |
主汽流量 | F | t/h | |
总给水流量 | FW | m3/h | |
可控参数 | 4#皮带频率 | S4 | Hz |
3#皮带频率 | S3 | Hz | |
2#皮带频率 | S2 | Hz | |
1#皮带频率 | S1 | Hz | |
一次风机总流量 | FA | m3/h | |
二次风总流量左 | FA1 | m3/h | |
二次风总流量右 | FA2 | m3/h | |
雷达反馈给料参数 | 4#皮带给料流量 | FS4 | m3/s |
3#皮带给料流量 | FS3 | m3/s | |
2#皮带给料流量 | FS2 | m3/s | |
1#皮带给料流量 | FS1 | m3/s | |
输出参数 | 燃烧室温度 | T | ℃ |
主蒸汽压力 | p | MPa | |
出口烟气含氧量 | O | % |
变量 | 给料响应时延/s | 对应MIC值 |
---|---|---|
燃烧室温度 | 320 | 0.25 |
主蒸汽压力 | 160 | 0.19 |
出口烟气氧量 | 120 | 0.50 |
Table 4 The delay time between key parameters and feed rate, and the corresponding MIC value
变量 | 给料响应时延/s | 对应MIC值 |
---|---|---|
燃烧室温度 | 320 | 0.25 |
主蒸汽压力 | 160 | 0.19 |
出口烟气氧量 | 120 | 0.50 |
模型 | 主蒸汽压力 | 燃烧室温度 | 出口烟气氧量 | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE/MPa | MAE/MPa | MAPE/% | RMSE/℃ | MAE/℃ | MAPE/% | RMSE/% | MAE/% | MAPE/% | |
PSO-ARX | 0.01 | 0.03 | 0.13 | 0.81 | 1.07 | 0.09 | 0.65 | 0.88 | 3.70 |
MLP | 0.17 | 0.13 | 1.42 | 14.58 | 11.63 | 1.38 | 0.52 | 0.42 | 2.35 |
PLS | 0.11 | 0.09 | 0.97 | 11.04 | 9.20 | 1.08 | 1.18 | 0.89 | 4.92 |
LSSVM | 0.06 | 0.033 | 0.28 | 4.34 | 1.70 | 0.20 | 1.07 | 0.49 | 2.78 |
ARX(NL) | 0.09 | 0.06 | 0.65 | 14.24 | 10.88 | 1.29 | 2.74 | 2.07 | 5.28 |
Table 5 The prediction evaluation indicators of three parameters by different models
模型 | 主蒸汽压力 | 燃烧室温度 | 出口烟气氧量 | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE/MPa | MAE/MPa | MAPE/% | RMSE/℃ | MAE/℃ | MAPE/% | RMSE/% | MAE/% | MAPE/% | |
PSO-ARX | 0.01 | 0.03 | 0.13 | 0.81 | 1.07 | 0.09 | 0.65 | 0.88 | 3.70 |
MLP | 0.17 | 0.13 | 1.42 | 14.58 | 11.63 | 1.38 | 0.52 | 0.42 | 2.35 |
PLS | 0.11 | 0.09 | 0.97 | 11.04 | 9.20 | 1.08 | 1.18 | 0.89 | 4.92 |
LSSVM | 0.06 | 0.033 | 0.28 | 4.34 | 1.70 | 0.20 | 1.07 | 0.49 | 2.78 |
ARX(NL) | 0.09 | 0.06 | 0.65 | 14.24 | 10.88 | 1.29 | 2.74 | 2.07 | 5.28 |
1 | 闫庆友, 陶杰. 中国生物质发电产业效率评价[J]. 运筹与管理, 2015, 24(1): 173-178, 208. |
Yan Q Y, Tao J. Evaluation of China biomass power generation lndustry efficiency[J]. Operations Research and Management Science, 2015, 24(1): 173-178, 208. | |
2 | 向柏祥. 100 MWe再热生物质循环流化床锅炉开发[D]. 北京:清华大学, 2015. |
Xiang B X. Development of a 100 MWe reheat biomass-fired circulating fluidized bed boiler[D]. Beijing: Tsinghua University, 2015. | |
3 | 王晓炜, 张志耀, 许晓峰, 等. 生物质循环流化床锅炉燃烧波动分析与对策[J]. 工业锅炉, 2023(4): 21-23. |
Wang X W, Zhang Z Y, Xu X F, et al. Analysis and countermeasures to combustion fluctuation of biomass-fired CFB boiler[J]. Industrial Boilers, 2023(4): 21-23. | |
4 | 樊博璇, 陈桂明, 常亮, 等. 激光雷达技术在军事领域应用现状及发展趋势[J]. 航天制造技术, 2021(3): 66-72. |
Fan B X, Chen G M, Chang L, et al. Application status and development trend of lidar technology in military field[J]. Aerospace Manufacturing Technology, 2021(3): 66-72. | |
5 | 蒙庆华, 林辉, 王革, 等. 激光雷达工作原理及发展现状[J]. 现代制造技术与装备, 2019(10): 155-157. |
Meng Q H, Lin H, Wang G, et al. Laser radar operating principle and development status[J]. Modern Manufacturing Technology and Equipment, 2019(10): 155-157. | |
6 | 叶飞, 倪云兵, 贺亦斌. 激光雷达料位计在水泥厂料仓监测中的应用[J]. 水泥工程, 2023(3): 53-55. |
Ye F, Ni Y B, He Y B. Application of lidar level meter in cement silo monitoring[J]. Cement Engineering, 2023(3): 53-55. | |
7 | 张开萍. 生物质循环流化床燃烧系统建模及机组蓄能研究[D]. 北京:华北电力大学, 2023. |
Zhang K P. Modeling of biomass circulating fluidized bed combustion system and research on unit energy storage[D]. Beijing: North China Electric Power University, 2023. | |
8 | 张开萍, 高明明, 龙江, 等. 生物质直燃式循环流化床锅炉燃烧系统建模及预测研究[J]. 动力工程学报, 2023, 43(4): 452-460. |
Zhang K P, Gao M M, Long J, et al. Modeling and prediction of biomass direct fired circulating fluidized bed boiler combustion system[J]. Journal of Chinese Society of Power Engineering, 2023, 43(4): 452-460. | |
9 | 王乐钟. 基于大数据的锅炉状态参数预报研究[D]. 北京: 华北电力大学, 2023. |
Wang L Z. Research on prediction of boiler state parameter based on big data[D]. Beijing: North China Electric Power University, 2023. | |
10 | 高明明, 于浩洋, 吕俊复, 等. 循环流化床氮氧化物排放预测模型及优化控制研究[J]. 洁净煤技术, 2020, 26(3): 46-51. |
Gao M M, Yu H Y, Lv J F, et al. Study on prediction model and optimal control of nitrogen oxides emission of circulating fluidized bed[J]. Clean Coal Technology, 2020, 26(3): 46-51. | |
11 | Li K, Thompson S, Peng J X. Modelling and prediction of NO x emission in a coal-fired power generation plant[J]. Control Engineering Practice, 2004, 12(6): 707-723. |
12 | 许霖杰. 超/超临界循环流化床锅炉数值模拟研究[D]. 杭州: 浙江大学, 2018. |
Xu L J. Numerical model development of an ultra/supercritical circulating fluidized bed boiler[D]. Hangzhou: Zhejiang University, 2018. | |
13 | 熊彬. 300 MW循环流化床锅炉主蒸汽压力和床温控制算法的研究[D]. 长沙: 长沙理工大学, 2013. |
Xiong B. Research on control algorithm of main steam pressure and bed temperature of 300 MW circulating fluidized bed boiler[D]. Changsha: Changsha University of Science & Technology, 2013. | |
14 | 尤海辉. 循环流化床垃圾焚烧炉燃烧优化试验研究[D]. 杭州: 浙江大学, 2021. |
You H H. Experimental study on combustion optimization of circulating fluidized bed waste incinerator[D]. Hangzhou: Zhejiang University, 2021. | |
15 | Zhang Z J, Zhang Y C, Shen W, et al. Multi-objective optimization of coal mill outlet temperature control using MPC[C]//2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR). IEEE, 2023: 314-320. |
16 | Afram A, Janabi-Sharifi F. Supervisory model predictive controller (MPC) for residential HVAC systems: implementation and experimentation on archetype sustainable house in Toronto[J]. Energy and Buildings, 2017, 154: 268-282. |
17 | Balram P, Tuan L A, Carlson O. Comparative study of MPC based coordinated voltage control in LV distribution systems with photovoltaics and battery storage[J]. International Journal of Electrical Power & Energy Systems, 2018, 95: 227-238. |
18 | Yu X B, Yu X R, Lu Y Q, et al. Differential evolution mutation operators for constrained multi-objective optimization[J]. Applied Soft Computing, 2018, 67: 452-466. |
19 | 陈炳基. 生物质循环流化床锅炉燃烧过程建模与优化控制[D]. 长沙: 长沙理工大学, 2018. |
Chen B J. Modeling and optimal control of combustion process of biomass circulating fluidized bed boiler[D]. Changsha: Changsha University of Science & Technology, 2018. | |
20 | 马莉, 孙万麟, 刘红. 基于模糊PID的火电机组主蒸汽温度控制系统设计[J]. 工业控制计算机, 2018, 31(9): 74-76. |
Ma L, Sun W L, Liu H. Main steam temperature control system of thermal power unit based on fuzzy PID[J]. Industrial Control Computer, 2018, 31(9): 74-76. | |
21 | 傅彩芬, 谭文. 循环流化床锅炉燃烧系统的控制研究[J]. 热能动力工程, 2016, 31(2): 66-73. |
Fu C F, Tan W. Study on control of combustion system of circulating fluidized bed boiler[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(2): 66-73. | |
22 | 刘博洋, 梁洪峰. 新型固态化激光雷达技术综述[J]. 科技创新导报, 2016, 13(13): 64-67. |
Liu B Y, Liang H F. Overview of new solid-state lidar technology[J]. Science and Technology Innovation Herald, 2016, 13(13): 64-67. | |
23 | 姜明男. 基于支持向量机和图像处理的大型固废焚烧炉控制参数预测[D]. 杭州: 浙江大学, 2022. |
Jiang M N. Control parameter prediction of large solid waste incinerator based on support vector machine and image processing[D]. Hangzhou: Zhejiang University, 2022. | |
24 | 吴康洛. 基于MIC变量选择的燃煤电站SCR脱硝系统动态建模方法研究[D]. 广州: 华南理工大学, 2022. |
Wu K L. Research on dynamic modeling method of SCR denitration system in coal-fired power station based on MIC variable selection[D]. Guangzhou: South China University of Technology, 2022. | |
25 | Tang Z H, Wu X Y, Cao S X. Adaptive nonlinear model predictive control of the combustion efficiency under the NO x emissions and load constraints[J]. Energies, 2019, 12(9): 1738. |
26 | Liukkonen M, Hälikkä E, Hiltunen T, et al. Dynamic soft sensors for NO x emissions in a circulating fluidized bed boiler[J]. Applied Energy, 2012, 97: 483-490. |
27 | Kim B S, Kim T Y, Park T C, et al. Comparative study of estimation methods of NO x emission with selection of input parameters for a coal-fired boiler[J]. Korean Journal of Chemical Engineering, 2018, 35(9): 1779-1790. |
28 | Leskens M. Improved economic performance of municipal solid waste combustion plants by model based combustion control[D]. Delft: Delft University of Technology, 2013. |
29 | 李建善. 基于S7-400 PLC生活垃圾焚烧机械炉排炉控制系统设计与应用[D]. 杭州: 浙江大学, 2020. |
Li J S. Design and application of grate furnace control system for domestic waste incineration machinery based on S7-400 PLC[D]. Hangzhou: Zhejiang University, 2020. | |
30 | 杨更更. Modbus软件开发实战指南[M]. 北京: 清华大学出版社, 2017. |
Yang G G. The Practical Developing Guide for Modbus[M]. Beijing: Tsinghua University Press, 2017. |
[1] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[2] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[3] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[9] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[10] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[11] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[12] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[13] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[14] | Qun ZHENG, Xuzhao WEI, Lexian DONG, Jihao ZHANG, Libin LEI. Study of the reconstruction method of distribution of relaxation times of electrochemical impedance spectroscopy based on elastic net regularization [J]. CIESC Journal, 2023, 74(12): 4979-4987. |
[15] | Xinwei MA, Xingsen MU, Zhu LONG, Shengqiang SHEN. Prediction of heat transfer coefficient of horizontal tube falling film evaporation based on GA-BP neural network [J]. CIESC Journal, 2023, 74(12): 4840-4851. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||