CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 956-966.DOI: 10.11949/0438-1157.20231357
• Energy and environmental engineering • Previous Articles Next Articles
Jiaqi WANG(), Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE()
Received:
2023-12-21
Revised:
2024-03-05
Online:
2024-05-11
Published:
2024-03-25
Contact:
Kun GE
王佳琪(), 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤()
通讯作者:
葛坤
作者简介:
王佳琪(1988—),女,博士,副教授,jiaqiwang@hrbeu.edu.cn
基金资助:
CLC Number:
Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles[J]. CIESC Journal, 2024, 75(3): 956-966.
王佳琪, 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤. 纳米粒子作用下CO2水合物生成机理研究[J]. 化工学报, 2024, 75(3): 956-966.
Add to citation manager EndNote|Ris|BibTeX
纳米流体体系 | 去离子水体积/ml | 纳米粒子种类 | 纳米粒子质量/g |
---|---|---|---|
0.10%石墨纳米流体 | 50 | 石墨纳米粒子 | 0.05 |
0.08%石墨纳米流体 | 50 | 石墨纳米粒子 | 0.04 |
0.08%铜纳米流体 | 50 | 铜纳米粒子 | 0.04 |
0.08%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.04 |
0.04%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.02 |
0.06%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.03 |
0.10%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.05 |
Table 1 Experimental materials dosage required for each nanofluid preparation
纳米流体体系 | 去离子水体积/ml | 纳米粒子种类 | 纳米粒子质量/g |
---|---|---|---|
0.10%石墨纳米流体 | 50 | 石墨纳米粒子 | 0.05 |
0.08%石墨纳米流体 | 50 | 石墨纳米粒子 | 0.04 |
0.08%铜纳米流体 | 50 | 铜纳米粒子 | 0.04 |
0.08%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.04 |
0.04%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.02 |
0.06%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.03 |
0.10%氧化铜纳米流体 | 50 | 氧化铜纳米粒子 | 0.05 |
1 | Boswell R, Yoneda J, Waite W F. India National Gas Hydrate Program Expedition 02 summary of scientific results: evaluation of natural gas-hydrate-bearing pressure cores[J]. Marine and Petroleum Geology, 2019, 108: 143-153. |
2 | Song Y C, Yang L, Zhao J F, et al. The status of natural gas hydrate research in China: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 778-791. |
3 | Wang J Q, Zhao J F, Zhang Y, et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel, 2016, 163: 34-40. |
4 | Xu H F, Khan M N, Peters C J, et al. Hydrate-based desalination using cyclopentane hydrates at atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2018, 63(4): 1081-1087. |
5 | Ponnivalavan B, Abhishek N, He T B, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107. |
6 | Liu N, Zhou J L, Gao M, et al. An experimental study on flow and heat transfer characteristics of binary hydrate slurries in a horizontal tube[J]. International Communications in Heat and Mass Transfer, 2019, 102: 34-41. |
7 | Sun Q B, Kang Y. Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application[J]. Energy, 2015, 91: 712-719. |
8 | Veluswamy H P, Kumar R, Linga P. Hydrogen storage in clathrate hydrates: current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132. |
9 | Wang J Q, Zhao J F, Yang M J, et al. Permeability of laboratory-formed porous media containing methane hydrate: observations using X-ray computed tomography and simulations with pore network models[J]. Fuel, 2015, 145: 170-179. |
10 | Xia Z M, Li X S, Chen Z Y, et al. Hydrate-based acidic gases capture for clean methane with new synergic additives[J]. Applied Energy, 2017, 207: 584-593. |
11 | 樊栓狮. 天然气水合物储存与运输技术[M]. 北京: 化学工业出版社, 2005: 1-30. |
Fan S S. Storage and Transportation Technology of Natural Gas Hydrate[M]. Beijing: Chemical Industry Press, 2005: 1-30. | |
12 | Lee S Y, Kim H C, Lee J D. Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap[J]. Journal of Crystal Growth, 2014, 402: 249-259. |
13 | Song Y C, Wang J Q, Liu Y, et al. Analysis of heat transfer influences on gas production from methane hydrates using a combined method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 766-773. |
14 | Mori Y H. Recent advances in hydrate-based technologies for natural gas storage-A review[J]. Chinese Journal of Chemical Engineering, 2003, 54(1): 1-17. |
15 | 王帅, 杜胜男, 刘胜利, 等. 促进天然气水合物形成的影响因素分析[J]. 当代化工, 2016, 45(2): 367-369, 372. |
Wang S, Du S N, Liu S L, et al. Analysis of factors of promoting natural gas hydrate formation[J]. Contemporary Chemical Industry, 2016, 45(2): 367-369, 372. | |
16 | He Y, Sun M T, Chen C, et al. Surfactant-based promotion to gas hydrate formation for energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21634-21661. |
17 | 李玉星, 朱超, 王武昌. 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6): 699-703. |
Li Y X, Zhu C, Wang W C. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics[J]. Petrochemical Technology, 2012, 41(6): 699-703. | |
18 | Celata G P, D'Annibale F, Mariani A, et al. Heat transfer in water-based SiC and TiO2 nanofluids[J]. Heat Transfer Engineering, 2013, 34(13): 1060-1072. |
19 | Li J P, Liang D Q, Guo K H, et al. Formation and dissociation of HFC134a gas hydrate in nano-copper suspension[J]. Energy Conversion and Management, 2006, 47(2): 201-210. |
20 | Yu Y S, Xu C G, Li X S. Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 64-69. |
21 | Ganji H, Aalaie J, Boroojerdi S H, et al. Effect of polymer nanocomposites on methane hydrate stability and storage capacity [J]. Journal of Petroleum Science and Engineering, 2013, 112: 32-35. |
22 | Chari V D, Sharma D V S G K, Prasad P S R, et al. Methane hydrates formation and dissociation in nano silica suspension[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 7-11. |
23 | Zhong D L, Wang J L, Lu Y Y, et al. Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation[J]. Energy, 2016, 102: 621-629. |
24 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
25 | Stryjek R, Vera J H. PRSV2: a cubic equation of state for accurate vapor-liquid equilibria calculations[J]. The Canadian Journal of Chemical Engineering, 1986, 64(5): 820-826. |
26 | Stryjek R, Vera J H. PRSV: an improved Peng-Robinson equation of state for pure compounds and mixtures[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 323-333. |
27 | Mohammadi A, Manteghian M, Haghtalab A, et al. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J]. Chemical Engineering Journal, 2014, 237: 387-395. |
28 | McCain W. The Properties of Petroleum Fluids[M]. Tulsa: PennWell Books, 1990. |
29 | Klauda J B, Sandler S I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3377-3386. |
30 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020. |
Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
31 | 张炜, 李昊阳, 徐纯刚, 等. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
Zhang W, Li H Y, Xu C G, et al. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827. | |
32 | Traciak J, Żyła G. Effect of nanoparticles saturation on the surface tension of nanofluids[J]. Journal of Molecular Liquids, 2022, 363: 119937. |
33 | Wanic M, Cabaleiro D, Hamze S, et al. Surface tension of ethylene glycol-based nanofluids containing various types of nitrides[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 799-806. |
34 | Zhang L Y, Fu Z B, Liu Y Y, et al. Experimental study on enhancement of falling film absorption process by adding various nanoparticles[J]. International Communications in Heat and Mass Transfer, 2018, 92: 100-106. |
35 | Sadeghinezhad E, Mehrali M, Saidur R, et al. A comprehensive review on graphene nanofluids: recent research, development and applications[J]. Energy Conversion and Management, 2016, 111: 466-487. |
36 | Buongiorno J, Venerus D C, Prabhat N, et al. A benchmark study on the thermal conductivity of nanofluids[J]. Journal of Applied Physics, 2009, 106(9): 094312. |
37 | Li Z, Zhong D L, Lu Y Y, et al. Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: application for CO2 capture from shale gas[J]. Applied energy, 2017, 199: 370-381. |
[1] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[2] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
[3] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[4] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[5] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[6] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[7] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[11] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[14] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[15] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||