CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 945-955.DOI: 10.11949/0438-1157.20231247
• Process system engineering • Previous Articles Next Articles
Lingxian ZHANG1(), Bin LIU1,2(), Lin DENG1, Yuhang REN1
Received:
2023-11-29
Revised:
2024-01-27
Online:
2024-05-11
Published:
2024-03-25
Contact:
Bin LIU
通讯作者:
刘斌
作者简介:
张领先(1995—),男,硕士,zhanglingxian@sf-auto.com
基金资助:
CLC Number:
Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception[J]. CIESC Journal, 2024, 75(3): 945-955.
张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955.
Add to citation manager EndNote|Ris|BibTeX
状态 | 氢气供气系统 | 空气供气系统 | 水热管理系统 |
---|---|---|---|
水淹 | 供应气体压力低 | 空压机喘振 | 水泵压力过低 |
膜干 | 氢气泄漏 | 空气管道泄漏 | 水管堵塞 |
短路 | 高压氢气阀故障 | 空气过滤器堵塞 | 循环水导电率过高 |
过载 | 氢气管堵塞 | 风机故障 | 水量不足 |
催化剂中毒 | 循环泵、尾气阀 | — | 冷却风扇损坏 |
致命故障 | — | — | 散热器故障 |
Table 1 PEMFC system fault types[12]
状态 | 氢气供气系统 | 空气供气系统 | 水热管理系统 |
---|---|---|---|
水淹 | 供应气体压力低 | 空压机喘振 | 水泵压力过低 |
膜干 | 氢气泄漏 | 空气管道泄漏 | 水管堵塞 |
短路 | 高压氢气阀故障 | 空气过滤器堵塞 | 循环水导电率过高 |
过载 | 氢气管堵塞 | 风机故障 | 水量不足 |
催化剂中毒 | 循环泵、尾气阀 | — | 冷却风扇损坏 |
致命故障 | — | — | 散热器故障 |
参数 | 数值 |
---|---|
有效活化面积/cm2 | 100 |
额定功率/W | 80 |
膜厚度/mm | 25 |
铂担量/(mg/cm2) | 0.2 |
气体扩散层厚度/mm | 415 |
Table 2 PEMFC stack parameters[19]
参数 | 数值 |
---|---|
有效活化面积/cm2 | 100 |
额定功率/W | 80 |
膜厚度/mm | 25 |
铂担量/(mg/cm2) | 0.2 |
气体扩散层厚度/mm | 415 |
序号 | 变量 | 单位 |
---|---|---|
1 | 电压 | V |
2 | 电流 | A |
3 | 阴极入口流速 | SPLM |
4 | 阳极入口流速 | SPLM |
5 | 阴极相对湿度 | % |
6 | 阳极相对湿度 | % |
7 | 阴极入口压力 | bar |
8 | 阳极入口压力 | bar |
9 | 阴极出口压力 | bar |
10 | 阳极出口压力 | bar |
11 | 阴极入口温度 | ℃ |
12 | 阳极入口温度 | ℃ |
13 | 电堆温度 | ℃ |
14 | 加热器温度 | ℃ |
Table 3 Characteristic variables for experimental monitoring[19]
序号 | 变量 | 单位 |
---|---|---|
1 | 电压 | V |
2 | 电流 | A |
3 | 阴极入口流速 | SPLM |
4 | 阳极入口流速 | SPLM |
5 | 阴极相对湿度 | % |
6 | 阳极相对湿度 | % |
7 | 阴极入口压力 | bar |
8 | 阳极入口压力 | bar |
9 | 阴极出口压力 | bar |
10 | 阳极出口压力 | bar |
11 | 阴极入口温度 | ℃ |
12 | 阳极入口温度 | ℃ |
13 | 电堆温度 | ℃ |
14 | 加热器温度 | ℃ |
参数 | 数值 |
---|---|
有效活化面积/cm2 | 280 |
电池数量/个 | 400 |
质子交换膜厚度/mm | 155 |
气体扩散层厚度/mm | 250 |
极限电流密度/(A/cm2) | 1.4 |
转移系数 | 0.5 |
扩散层水蒸气扩散率 | 0.07 |
阳极/阴极铂担量/(mg/cm2) | 0.1/0.4 |
Table 4 Simulated stack parameters
参数 | 数值 |
---|---|
有效活化面积/cm2 | 280 |
电池数量/个 | 400 |
质子交换膜厚度/mm | 155 |
气体扩散层厚度/mm | 250 |
极限电流密度/(A/cm2) | 1.4 |
转移系数 | 0.5 |
扩散层水蒸气扩散率 | 0.07 |
阳极/阴极铂担量/(mg/cm2) | 0.1/0.4 |
故障类型 | 产生机理 |
---|---|
冷却系统故障 | 缩短冷却剂循环通道 |
氢气饥饿 | 降低氢气过量比 |
空气饥饿 | 降低空气过量比 |
加湿系统故障 | 降低进气相对湿度 |
Table 5 Failure mechanism
故障类型 | 产生机理 |
---|---|
冷却系统故障 | 缩短冷却剂循环通道 |
氢气饥饿 | 降低氢气过量比 |
空气饥饿 | 降低空气过量比 |
加湿系统故障 | 降低进气相对湿度 |
序号 | 变量 | 单位 |
---|---|---|
1 | 电压 | V |
2 | 电流 | A |
3 | 温度 | K |
4 | 氢气罐压力 | MPa |
5 | 耗氢量 | L |
6 | 燃料质量 | g/L |
7 | 产生能量 | kW·h |
8 | 热效率 | % |
9 | 氢气利用率 | % |
10 | 氧气利用率 | % |
Table 6 Variables monitored by simulation
序号 | 变量 | 单位 |
---|---|---|
1 | 电压 | V |
2 | 电流 | A |
3 | 温度 | K |
4 | 氢气罐压力 | MPa |
5 | 耗氢量 | L |
6 | 燃料质量 | g/L |
7 | 产生能量 | kW·h |
8 | 热效率 | % |
9 | 氢气利用率 | % |
10 | 氧气利用率 | % |
模型 | 类型 | 评价指标 | |||
---|---|---|---|---|---|
精准率/% | 召回率/% | F1分数/% | 准确率/% | ||
Xception | D0 | 100 | 100 | 100 | 100 |
D1 | 100 | 100 | 100 | ||
D2 | 100 | 100 | 100 | ||
LSTM | D0 | 100 | 100 | 100 | 100 |
D1 | 100 | 100 | 100 | ||
D2 | 100 | 100 | 100 |
Table 7 Evaluation indicators for experimental fault data
模型 | 类型 | 评价指标 | |||
---|---|---|---|---|---|
精准率/% | 召回率/% | F1分数/% | 准确率/% | ||
Xception | D0 | 100 | 100 | 100 | 100 |
D1 | 100 | 100 | 100 | ||
D2 | 100 | 100 | 100 | ||
LSTM | D0 | 100 | 100 | 100 | 100 |
D1 | 100 | 100 | 100 | ||
D2 | 100 | 100 | 100 |
模型 | 诊断 类型 | 实际类型 | ||
---|---|---|---|---|
D0 | D1 | D2 | ||
Xception | D0 | 3188 | 0 | 0 |
D1 | 0 | 4083 | 0 | |
D2 | 0 | 0 | 5377 | |
LSTM | D0 | 3188 | 0 | 0 |
D1 | 0 | 4083 | 0 | |
D2 | 0 | 0 | 5377 |
Table 8 Confusion matrix of experimental fault data test set
模型 | 诊断 类型 | 实际类型 | ||
---|---|---|---|---|
D0 | D1 | D2 | ||
Xception | D0 | 3188 | 0 | 0 |
D1 | 0 | 4083 | 0 | |
D2 | 0 | 0 | 5377 | |
LSTM | D0 | 3188 | 0 | 0 |
D1 | 0 | 4083 | 0 | |
D2 | 0 | 0 | 5377 |
模型 | 类型 | 评价指标 | |||
---|---|---|---|---|---|
精准率/% | 召回率/% | F1分数/% | 准确率/% | ||
Xception | F0 | 99.48 | 99.74 | 99.61 | 96.06 |
F1 | 100 | 100 | 100 | ||
F2 | 100 | 100 | 100 | ||
F3 | 95.81 | 100 | 97.86 | ||
F4 | 100 | 95.51 | 97.70 | ||
LSTM | F0 | 99.73 | 94.81 | 97.20 | 92.33 |
F1 | 100 | 100 | 100 | ||
F2 | 100 | 99.13 | 99.56 | ||
F3 | 97.46 | 96.00 | 96.73 | ||
F4 | 93.92 | 98.38 | 96.10 |
Table 9 Evaluation indicators for simulation fault data
模型 | 类型 | 评价指标 | |||
---|---|---|---|---|---|
精准率/% | 召回率/% | F1分数/% | 准确率/% | ||
Xception | F0 | 99.48 | 99.74 | 99.61 | 96.06 |
F1 | 100 | 100 | 100 | ||
F2 | 100 | 100 | 100 | ||
F3 | 95.81 | 100 | 97.86 | ||
F4 | 100 | 95.51 | 97.70 | ||
LSTM | F0 | 99.73 | 94.81 | 97.20 | 92.33 |
F1 | 100 | 100 | 100 | ||
F2 | 100 | 99.13 | 99.56 | ||
F3 | 97.46 | 96.00 | 96.73 | ||
F4 | 93.92 | 98.38 | 96.10 |
模型 | 诊断类型 | 实际类型 | ||||
---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | ||
Xception | F0 | 384 | 0 | 0 | 0 | 2 |
F1 | 0 | 342 | 0 | 0 | 0 | |
F2 | 0 | 0 | 800 | 0 | 0 | |
F3 | 1 | 0 | 0 | 800 | 34 | |
F4 | 0 | 0 | 0 | 0 | 764 | |
LSTM | F0 | 365 | 0 | 0 | 0 | 1 |
F1 | 0 | 342 | 0 | 0 | 0 | |
F2 | 0 | 0 | 793 | 0 | 0 | |
F3 | 5 | 0 | 3 | 768 | 12 | |
F4 | 15 | 0 | 4 | 32 | 787 |
Table 10 Confusion matrix of simulation fault data test set
模型 | 诊断类型 | 实际类型 | ||||
---|---|---|---|---|---|---|
F0 | F1 | F2 | F3 | F4 | ||
Xception | F0 | 384 | 0 | 0 | 0 | 2 |
F1 | 0 | 342 | 0 | 0 | 0 | |
F2 | 0 | 0 | 800 | 0 | 0 | |
F3 | 1 | 0 | 0 | 800 | 34 | |
F4 | 0 | 0 | 0 | 0 | 764 | |
LSTM | F0 | 365 | 0 | 0 | 0 | 1 |
F1 | 0 | 342 | 0 | 0 | 0 | |
F2 | 0 | 0 | 793 | 0 | 0 | |
F3 | 5 | 0 | 3 | 768 | 12 | |
F4 | 15 | 0 | 4 | 32 | 787 |
比例 | 准确率/% | ||||
---|---|---|---|---|---|
Xception | LSTM | GRU | SVM | RF | |
4∶6 | 98.08 | 87.53 | 83.64 | 86.47 | 94.19 |
5∶5 | 98.21 | 91.18 | 83.70 | 87.60 | 91.24 |
6∶4 | 96.72 | 90.73 | 86.57 | 86.57 | 90.25 |
7∶3 | 96.06 | 92.33 | 86.79 | 87.97 | 91.80 |
8∶2 | 95.85 | 90.58 | 87.86 | 87.86 | 85.94 |
Table 11 Comparison of diagnostic accuracy under variable partition ratios
比例 | 准确率/% | ||||
---|---|---|---|---|---|
Xception | LSTM | GRU | SVM | RF | |
4∶6 | 98.08 | 87.53 | 83.64 | 86.47 | 94.19 |
5∶5 | 98.21 | 91.18 | 83.70 | 87.60 | 91.24 |
6∶4 | 96.72 | 90.73 | 86.57 | 86.57 | 90.25 |
7∶3 | 96.06 | 92.33 | 86.79 | 87.97 | 91.80 |
8∶2 | 95.85 | 90.58 | 87.86 | 87.86 | 85.94 |
1 | 马睿, 党翰斌, 张钰奇, 等. 质子交换膜燃料电池系统故障机理分析及诊断方法研究综述[J]. 中国电机工程学报, 2024, 44(1): 407-427. |
Ma R, Dang H B, Zhang Y Q, et al. A review on failure mechanism analysis and diagnosis for proton exchange membrane fuel cell systems[J]. Proceedings of the CSEE, 2024, 44(1): 407-427. | |
2 | 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, DOI:10.11896/cldb.22070018 . |
Li L X, Pan M, Guo W. Research progress of online monitoring methods for proton exchange membrane fuel cells[J]. Materials Reports. DOI:10.11896/cldb.22070018 . | |
3 | Wang J B, Yang B, Zeng C Y, et al. Recent advances and summarization of fault diagnosis techniques for proton exchange membrane fuel cell systems: a critical overview[J]. Journal of Power Sources, 2021, 500: 229932. |
4 | 刘相万, 杨扬, 朱文超, 等. 基于二阶RQ-RLC模型的质子交换膜燃料电池水管理故障诊断[J]. 中国电机工程学报, 2022, 42(21): 7893-7905. |
Liu X W, Yang Y, Zhu W C, et al. Second-order RQ-RLC model-based fault diagnosis for water management in proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2022, 42(21): 7893-7905. | |
5 | Kim J, Lee I, Tak Y, et al. Impedance-based diagnosis of polymer electrolyte membrane fuel cell failures associated with a low frequency ripple current[J]. Renewable Energy, 2013, 51: 302-309. |
6 | Rotondo D, Fernandez-Canti R M, Tornil-Sin S, et al. Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2875-2886. |
7 | Hinaje M, Béthoux O, Krebs G, et al. Nonintrusive diagnosis of a PEMFC[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. |
8 | 孙誉宁, 毛磊, 黄伟国, 等. 基于磁场的质子交换膜燃料电池故障诊断方法[J]. 机械工程学报, 2022, 58(22): 106-114. |
Sun Y N, Mao L, Huang W G, et al. Fault diagnosis of proton exchange membrane fuel cell using magnetic field data[J]. Journal of Mechanical Engineering, 2022, 58(22): 106-114. | |
9 | Kamal M M, Yu D W, Yu D L. Fault detection and isolation for PEM fuel cell stack with independent RBF model[J]. Engineering Applications of Artificial Intelligence, 2014, 28: 52-63. |
10 | 刘嘉蔚, 李奇, 陈维荣, 等. 基于概率神经网络和线性判别分析的PEMFC水管理故障诊断方法研究[J]. 中国电机工程学报, 2019, 39(12): 3614-3622. |
Liu J W, Li Q, Chen W R, et al. Research on PEMFC water management fault diagnosis method based on probabilistic neural network and linear discriminant analysis[J]. Proceedings of the CSEE, 2019, 39(12): 3614-3622. | |
11 | Quan R, Liang W L, Wang J H, et al. An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm[J]. International Journal of Hydrogen Energy, 2024, 50: 1184-1196. |
12 | Yuan H, Dai H F, Wei X Z, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: 228376. |
13 | Liu J W, Li Q, Yang H Q, et al. Sequence fault diagnosis for PEMFC water management subsystem using deep learning with t-SNE[J]. IEEE Access, 2019, 7: 92009-92019. |
14 | Liu Z Y, Pei M L, He Q B, et al. A novel method for polymer electrolyte membrane fuel cell fault diagnosis using 2D data[J]. Journal of Power Sources, 2021, 482: 228894. |
15 | Zhou S, Fan L, Zhang G, et al. A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management[J]. Applied Energy, 2022, 310: 118555. |
16 | Du R B, Wei X Z, Wang X Y, et al. A fault diagnosis model for proton exchange membrane fuel cell based on impedance identification with differential evolution algorithm[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38795-38808. |
17 | Gu X, Hou Z J, Cai J. Data-based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks[J]. Energy and AI, 2021, 4: 100056. |
18 | Zhou S, Wang K, Shan J, et al. Data-driven multi-type and multi-level fault diagnosis of proton exchange membrane fuel cell systems using artificial intelligence algorithms[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2022. |
19 | Mao L, Jackson L. Effect of sensor set size on polymer electrolyte membrane fuel cell fault diagnosis[J]. Sensors, 2018, 18(9): 2777. |
20 | Ceylan C, Devrim Y. Design and simulation of the PV/PEM fuel cell based hybrid energy system using MATLAB/Simulink for greenhouse application[J]. International Journal of Hydrogen Energy, 2021, 46(42): 22092-22106. |
21 | Dickinson E J F, Smith G. Modelling the proton-conductive membrane in practical polymer electrolyte membrane fuel cell (PEMFC) simulation: a review[J]. Membranes, 2020, 10(11): 310. |
22 | Zhou S W, Dhupia J S. RETRACTED: online adaptive water management fault diagnosis of PEMFC based on orthogonal linear discriminant analysis and relevance vector machine[J]. International Journal of Hydrogen Energy, 2020, 45(11): 7005-7014. |
23 | Qais M H, Hasanien H M, Alghuwainem S. Transient search optimization: a new meta-heuristic optimization algorithm[J]. Applied Intelligence, 2020, 50(11): 3926-3941. |
24 | Fatani A, Abd Elaziz M, Dahou A, et al. IoT intrusion detection system using deep learning and enhanced transient search optimization[J]. IEEE Access, 2021, 9: 123448-123464. |
25 | 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J].哈尔滨工业大学学报, 2018, 50(11): 40-49. |
Teng Z J, Lv J L, Guo L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49. | |
26 | 陈娟, 赵嘉, 肖人彬, 等. 基于动态反向学习和莱维飞行的双搜索模式萤火虫算法[J]. 信息与控制, 2023, 52(5): 607-615. |
Chen J, Zhao J, Xiao R B, et al. Double search mode firefly algorithm based on dynamic reverse learning and levy flight[J]. Information and Control, 2023, 52(5): 607-615. | |
27 | Chollet F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 1800-1807. |
28 | Poulose A, Reddy C S, Kim J H, et al. Foreground extraction based facial emotion recognition using deep learning xception model[C]//2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). Jeju Island, Korea: IEEE, 2021: 356-360. |
29 | 张扬, 李晓杰, 马兹林, 等. 锂离子电池故障诊断算法研究综述[J]. 重庆理工大学学报(自然科学), 2023, 37(9): 49-61. |
Zhang Y, Li X J, Ma Z L, et al. A review of fault diagnosis for lithium ion batteries[J]. Journal of Chongqing University of Technology(Natural Science), 2023, 37(9): 49-61. | |
30 | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
Yong J W, Zhao Q Q, Feng N L. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model[J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[1] | Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack [J]. CIESC Journal, 2024, 75(2): 637-646. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[4] | Shuaihang JI, Jinjiang WANG, Rui CAI, Xuehao SUN, Weifeng GE. Research on reduced order modeling and intelligent sensing method for heat exchangers driven by digital twin [J]. CIESC Journal, 2023, 74(10): 4218-4228. |
[5] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[6] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[7] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[8] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[9] | ZHANG Chi, LI Hao, HU Haitao, ZHU Chong, ZHANG Yuying, NAN Guopeng, SHU Yue. Aircraft bearing fault diagnosis based on automatic feature engineering [J]. CIESC Journal, 2021, 72(S1): 430-436. |
[10] | Xin YANG, Zherui MA, Henan SHEN, Hongwei CHEN. Fault diagnosis of airflow jamming fault in double circulating fluidized bed based on multi-scale feature energy and KELM [J]. CIESC Journal, 2019, 70(7): 2616-2625. |
[11] | Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA [J]. CIESC Journal, 2019, 70(7): 2594-2605. |
[12] | Kaixiang PENG, Chuanfang ZHANG, Liang MA, Jie DONG, Ruihua JIAO, Peng TANG. System-levels-based holographic fault diagnosis for complex industrial processes [J]. CIESC Journal, 2019, 70(2): 590-598. |
[13] | Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction [J]. CIESC Journal, 2019, 70(2): 736-749. |
[14] | Kun ZHAI, Wenxia DU, Feng LYU, Tao XIN, Xiyuan JU. Fault detect method based on improved dynamic kernel principal component analysis [J]. CIESC Journal, 2019, 70(2): 716-722. |
[15] | Chunyan LU, Wei LI. Fault diagnosis method of petrochemical air compressor based on deep belief network [J]. CIESC Journal, 2019, 70(2): 757-763. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||