CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 2047-2059.DOI: 10.11949/0438-1157.20231153
• Energy and environmental engineering • Previous Articles Next Articles
Di WANG(), Weiqian CHEN, Lingfang SUN(), Yunlong ZHOU
Received:
2023-11-09
Revised:
2024-03-20
Online:
2024-06-25
Published:
2024-05-25
Contact:
Lingfang SUN
通讯作者:
孙灵芳
作者简介:
王迪 (1989—),男,博士,副教授,wd1989125@163.com
基金资助:
CLC Number:
Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle[J]. CIESC Journal, 2024, 75(5): 2047-2059.
王迪, 陈伟倩, 孙灵芳, 周云龙. 光热-跨临界压缩二氧化碳储能循环动态特性研究[J]. 化工学报, 2024, 75(5): 2047-2059.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
辐射峰值/(kW/m2) | 800 |
平均辐射值/(kW/m2) | 430 |
接收板数/块 | 24 |
每块接收板上的吸热管数/根 | 32 |
吸热管管道直径/cm | 2.1 |
吸热管管壁厚度/mm | 1.2 |
接收器高度/m | 6.2 |
接收器直径/m | 5.1 |
接收器离地面高度/m | 76.2 |
Table 1 Receiver system parameter
参数 | 数值 |
---|---|
辐射峰值/(kW/m2) | 800 |
平均辐射值/(kW/m2) | 430 |
接收板数/块 | 24 |
每块接收板上的吸热管数/根 | 32 |
吸热管管道直径/cm | 2.1 |
吸热管管壁厚度/mm | 1.2 |
接收器高度/m | 6.2 |
接收器直径/m | 5.1 |
接收器离地面高度/m | 76.2 |
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
压缩机出口温度/℃ | 327.10 | 324 | 0.96% |
压缩机出口压力/kPa | 13827.90 | 13840 | 0.09% |
透平出口温度/℃ | 740.20 | 750 | 1.31% |
透平出口压力/kPa | 7890.20 | 7890 | 0.003% |
换热器冷端出口温度/℃ | 808.80 | 810 | 0.15% |
换热器冷端出口压力/kPa | 13498.40 | 13500 | 0.01% |
预冷器热端出口温度/℃ | 305.10 | 305 | 0.03% |
预冷器热端出口压力/kPa | 7684 | 7690 | 0.08% |
Table 2 Steady-state verification of TC-CCES model
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
压缩机出口温度/℃ | 327.10 | 324 | 0.96% |
压缩机出口压力/kPa | 13827.90 | 13840 | 0.09% |
透平出口温度/℃ | 740.20 | 750 | 1.31% |
透平出口压力/kPa | 7890.20 | 7890 | 0.003% |
换热器冷端出口温度/℃ | 808.80 | 810 | 0.15% |
换热器冷端出口压力/kPa | 13498.40 | 13500 | 0.01% |
预冷器热端出口温度/℃ | 305.10 | 305 | 0.03% |
预冷器热端出口压力/kPa | 7684 | 7690 | 0.08% |
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
熔盐入口温度/℃ | 302 | 302 | — |
熔盐流量/(kg/s) | 70.90 | 70.90 | — |
DNI/(W/m2) | 897.50 | 897.50 | — |
风速/(m/s) | 1.2 | 1.2 | — |
定日镜场镜面总面积/m2 | 82980 | 82980 | — |
熔盐出口温度/℃ | 561.42 | 561.90 | 0.09% |
Table 3 Steady-state verification of photothermal model
参数 | 仿真值 | 文献[ | 相对误差 |
---|---|---|---|
熔盐入口温度/℃ | 302 | 302 | — |
熔盐流量/(kg/s) | 70.90 | 70.90 | — |
DNI/(W/m2) | 897.50 | 897.50 | — |
风速/(m/s) | 1.2 | 1.2 | — |
定日镜场镜面总面积/m2 | 82980 | 82980 | — |
熔盐出口温度/℃ | 561.42 | 561.90 | 0.09% |
参数 | 数值 |
---|---|
环境温度Ta/K | 298.15 |
压缩机入口温度/K | 304.1 |
透平入口温度/K | 469.0 |
压缩机入口压力/MPa | 7.39 |
压缩机出口压力/MPa | 38.43 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 88 |
压缩机转子直径/mm | 99 |
透平转子直径/mm | 80 |
压缩机、透平转速/(r/min) | 60000 |
压缩机耗功/MW | 4.37 |
透平做功/MW | 2.85 |
预冷器换热面积/m2 | 1833 |
加热器换热面积/m2 | 131.8 |
储能压力/MPa | 38.43 |
Table 4 System design parameter
参数 | 数值 |
---|---|
环境温度Ta/K | 298.15 |
压缩机入口温度/K | 304.1 |
透平入口温度/K | 469.0 |
压缩机入口压力/MPa | 7.39 |
压缩机出口压力/MPa | 38.43 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 88 |
压缩机转子直径/mm | 99 |
透平转子直径/mm | 80 |
压缩机、透平转速/(r/min) | 60000 |
压缩机耗功/MW | 4.37 |
透平做功/MW | 2.85 |
预冷器换热面积/m2 | 1833 |
加热器换热面积/m2 | 131.8 |
储能压力/MPa | 38.43 |
参数 | 数值 |
---|---|
储能效率/% | 58.01 |
循环效率/% | 60.85 |
储能密度/(kW/m3) | 28.43 |
Table 5 Calculation result of system performance indicators
参数 | 数值 |
---|---|
储能效率/% | 58.01 |
循环效率/% | 60.85 |
储能密度/(kW/m3) | 28.43 |
季节 | 储能效率/% | 储能密度/(kW/m3) |
---|---|---|
春季 | 39.51 | 19.06 |
夏季 | 39.83 | 19.19 |
秋季 | 41.56 | 20.02 |
冬季 | 34.75 | 16.93 |
Table 6 System performance index under different working conditions (four seasons)
季节 | 储能效率/% | 储能密度/(kW/m3) |
---|---|---|
春季 | 39.51 | 19.06 |
夏季 | 39.83 | 19.19 |
秋季 | 41.56 | 20.02 |
冬季 | 34.75 | 16.93 |
1 | 刘佳, 夏红德, 陈海生, 等. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12): 1993-1996. |
Liu J, Xia H D, Chen H S, et al. A novel energy storage technology based on liquid air and its application in wind power[J]. Journal of Engineering Thermophysics, 2010, 31(12): 1993-1996. | |
2 | 国家能源局. 国家能源局2021年二季度网上新闻发布会文字实录[EB/OL]. [2021-04-29]. . |
National Energy Administration. Transcript of the National Energy Administration’s online press conference in the second quarter of 2021[EB/OL]. [2021-04-29]. . | |
3 | 王世杰, 胡威, 高鑫, 等. 新能源并网发电对配电网电能质量的影响研究[J]. 计算技术与自动化, 2021, 40(2): 47-52. |
Wang S J, Hu W, Gao X, et al. Influence of new energy generation connected on power quality of distribution network[J]. Computing Technology and Automation, 2021, 40(2): 47-52. | |
4 | Wang H R, Wang L Q, Wang X B, et al. A novel pumped hydro combined with compressed air energy storage system[J]. Energies, 2013, 6(3): 1554-1567. |
5 | Nayak D S, Shivarudraswamy R, Drossard F. The new control scheme for the PV and wind hybrid system connected to the single phase grid[J]. Journal of Electrical Engineering & Technology, 2020, 15(5): 1929-1936. |
6 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
7 | Ahmadi M H, Mehrpooya M, Pourfayaz F. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink[J]. Applied Thermal Engineering, 2016, 109: 640-652. |
8 | Kim Y M, Shin D G, Lee S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. |
9 | Hao Y P, He Q, Liu W Y, et al. Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump[J]. International Journal of Energy Research, 2020, 44(10): 7924-7937. |
10 | Zhang X R, Wang G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41: 1487-1503. |
11 | Liu H, He Q, Borgia A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159. |
12 | Zhang Y, Yang K, Hong H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697. |
13 | 吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100. |
Wu Y, Hu D S, Wang M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 45-49, 100. | |
14 | Liu X, Yan X W, Liu X L, et al. Comprehensive evaluation of a novel liquid carbon dioxide energy storage system with cold recuperator: energy, conventional exergy and advanced exergy analysis[J]. Energy Conversion and Management, 2021, 250: 114909. |
15 | Manikumar R, Arasu A V. A feasibility study of carbon-dioxide based Rankine cycle powered by the linear Fresnel reflector solar concentrator system[J]. Distributed Generation & Alternative Energy Journal, 2018, 33(2): 58-80. |
16 | Yamaguchi H, Yamasaki H, Kizilkan O. Experimental investigation of solar-assisted transcritical CO2 Rankine cycle for summer and winter conditions from exergetic point of view[J]. International Journal of Energy Research, 2020, 44(2): 1089-1102. |
17 | Alzahrani A A, Dincer I. Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems[J]. Solar Energy, 2018, 170: 557-567. |
18 | Zhang Q, Jiang K J, Ge Z H, et al. Control strategy of molten salt solar power tower plant function as peak load regulation in grid[J]. Applied Energy, 2021, 294: 116967. |
19 | Singh R, Miller S A, Rowlands A S, et al. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant[J]. Energy, 2013, 50: 194-204. |
20 | Dyreby J J, Klein S A, Nellis G F, et al. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles[C]//Proceedings of ASME Turbo Expo 2013. Turbine Technical Conference and Exposition. Texas, USA: San Antonio, 2013, 8: 95824. |
21 | Olumayegun O, Wang M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249: 89-102. |
22 | Hu H M, Guo C H, Cai H F, et al. Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J]. Energy, 2021, 214: 119017. |
23 | Chu W, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194. |
24 | Ibarra M, Rovira A, Alarcón-Padilla D C, et al. Performance of a 5kWe Organic Rankine Cycle at part-load operation[J]. Applied Energy, 2014, 120: 147-158. |
25 | 刘春尧. 槽式太阳能低温热发电过程建模与控制[D]. 北京: 华北电力大学, 2019. |
Liu C Y. Modeling and control of low temperature parabolic trough solar thermal power generation processes[D]. Beijing: North China Electric Power University, 2019. | |
26 | Guo H, Xu Y J, Zhang X H, et al. Dynamic characteristics and control of supercritical compressed air energy storage systems[J]. Applied Energy, 2021, 283: 116294. |
27 | Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836. |
28 | Yang J Z, Yang Z, Duan Y Y. Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system[J]. Energy, 2020, 201: 117676. |
29 | 任涛.基于联立方程的塔式太阳能热电系统模拟与运行优化[D]. 杭州: 浙江大学, 2015. |
Ren T. Simulation and operation optimization of solar tower power system based on simultaneous equations[D]. Hangzhou: Zhejiang University, 2015. | |
30 | 孙嘉. 超临界二氧化碳循环发电系统动态特性及控制应用分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Sun J. Characteristic simulation and control of supercritical carbon dioxide cycle power generation system[D]. Harbin: Harbin Institute of Technology, 2018. | |
31 | 何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报 (自然科学版), 2020, 47(5): 93-101. |
He Q, Hao Y P, Liu W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(5): 93-101. | |
32 | Liu Z, Liu B, Guo J Z, et al. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2019, 198: 111807. |
33 | Deng T R, Li X H, Wang Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180: 292-302. |
34 | Bradshaw R W, Dawson D B, De La Rosa W, et al. Final test and evaluation results from the solar two project[R]. Livermore, CA (United States): Sandia National Lab, 2002. |
35 | 李佳燕.太阳能热发电系统接收器的建模仿真及控制算法研究[D]. 杭州: 浙江大学, 2015. |
Li J Y. Research on modeling, simulation and control algorithm of the receiver in a solar power station[D]. Hangzhou: Zhejiang University, 2015. |
[1] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[2] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[3] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[4] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[5] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[6] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[7] | Ning LI, Pengfei ZHU, Lifeng ZHANG, Dongchen LU. Image reconstruction of electrical capacitance tomography based on non-convex and nonseparable regularization algorithm [J]. CIESC Journal, 2024, 75(3): 836-846. |
[8] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[9] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[10] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[11] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[12] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[13] | Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid [J]. CIESC Journal, 2024, 75(2): 439-449. |
[14] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[15] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||