1 |
刘佳, 夏红德, 陈海生, 等. 新型液化空气储能技术及其在风电领域的应用[J]. 工程热物理学报, 2010, 31(12): 1993-1996.
|
|
Liu J, Xia H D, Chen H S, et al. A novel energy storage technology based on liquid air and its application in wind power[J]. Journal of Engineering Thermophysics, 2010, 31(12): 1993-1996.
|
2 |
国家能源局. 国家能源局2021年二季度网上新闻发布会文字实录[EB/OL]. [2021-04-29]. .
|
|
National Energy Administration. Transcript of the National Energy Administration’s online press conference in the second quarter of 2021[EB/OL]. [2021-04-29]. .
|
3 |
王世杰, 胡威, 高鑫, 等. 新能源并网发电对配电网电能质量的影响研究[J]. 计算技术与自动化, 2021, 40(2): 47-52.
|
|
Wang S J, Hu W, Gao X, et al. Influence of new energy generation connected on power quality of distribution network[J]. Computing Technology and Automation, 2021, 40(2): 47-52.
|
4 |
Wang H R, Wang L Q, Wang X B, et al. A novel pumped hydro combined with compressed air energy storage system[J]. Energies, 2013, 6(3): 1554-1567.
|
5 |
Nayak D S, Shivarudraswamy R, Drossard F. The new control scheme for the PV and wind hybrid system connected to the single phase grid[J]. Journal of Electrical Engineering & Technology, 2020, 15(5): 1929-1936.
|
6 |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661.
|
7 |
Ahmadi M H, Mehrpooya M, Pourfayaz F. Thermodynamic and exergy analysis and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink[J]. Applied Thermal Engineering, 2016, 109: 640-652.
|
8 |
Kim Y M, Shin D G, Lee S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501.
|
9 |
Hao Y P, He Q, Liu W Y, et al. Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump[J]. International Journal of Energy Research, 2020, 44(10): 7924-7937.
|
10 |
Zhang X R, Wang G B. Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid[J]. International Journal of Energy Research, 2017, 41: 1487-1503.
|
11 |
Liu H, He Q, Borgia A, et al. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs[J]. Energy Conversion and Management, 2016, 127: 149-159.
|
12 |
Zhang Y, Yang K, Hong H, et al. Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid[J]. Renewable Energy, 2016, 99: 682-697.
|
13 |
吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016, 50(3): 45-49, 100.
|
|
Wu Y, Hu D S, Wang M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 45-49, 100.
|
14 |
Liu X, Yan X W, Liu X L, et al. Comprehensive evaluation of a novel liquid carbon dioxide energy storage system with cold recuperator: energy, conventional exergy and advanced exergy analysis[J]. Energy Conversion and Management, 2021, 250: 114909.
|
15 |
Manikumar R, Arasu A V. A feasibility study of carbon-dioxide based Rankine cycle powered by the linear Fresnel reflector solar concentrator system[J]. Distributed Generation & Alternative Energy Journal, 2018, 33(2): 58-80.
|
16 |
Yamaguchi H, Yamasaki H, Kizilkan O. Experimental investigation of solar-assisted transcritical CO2 Rankine cycle for summer and winter conditions from exergetic point of view[J]. International Journal of Energy Research, 2020, 44(2): 1089-1102.
|
17 |
Alzahrani A A, Dincer I. Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems[J]. Solar Energy, 2018, 170: 557-567.
|
18 |
Zhang Q, Jiang K J, Ge Z H, et al. Control strategy of molten salt solar power tower plant function as peak load regulation in grid[J]. Applied Energy, 2021, 294: 116967.
|
19 |
Singh R, Miller S A, Rowlands A S, et al. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant[J]. Energy, 2013, 50: 194-204.
|
20 |
Dyreby J J, Klein S A, Nellis G F, et al. Modeling off-design and part-load performance of supercritical carbon dioxide power cycles[C]//Proceedings of ASME Turbo Expo 2013. Turbine Technical Conference and Exposition. Texas, USA: San Antonio, 2013, 8: 95824.
|
21 |
Olumayegun O, Wang M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249: 89-102.
|
22 |
Hu H M, Guo C H, Cai H F, et al. Dynamic characteristics of the recuperator thermal performance in a S-CO2 Brayton cycle[J]. Energy, 2021, 214: 119017.
|
23 |
Chu W, Li X H, Ma T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2017, 113: 184-194.
|
24 |
Ibarra M, Rovira A, Alarcón-Padilla D C, et al. Performance of a 5kWe Organic Rankine Cycle at part-load operation[J]. Applied Energy, 2014, 120: 147-158.
|
25 |
刘春尧. 槽式太阳能低温热发电过程建模与控制[D]. 北京: 华北电力大学, 2019.
|
|
Liu C Y. Modeling and control of low temperature parabolic trough solar thermal power generation processes[D]. Beijing: North China Electric Power University, 2019.
|
26 |
Guo H, Xu Y J, Zhang X H, et al. Dynamic characteristics and control of supercritical compressed air energy storage systems[J]. Applied Energy, 2021, 283: 116294.
|
27 |
Wang K, He Y L, Zhu H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195: 819-836.
|
28 |
Yang J Z, Yang Z, Duan Y Y. Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system[J]. Energy, 2020, 201: 117676.
|
29 |
任涛.基于联立方程的塔式太阳能热电系统模拟与运行优化[D]. 杭州: 浙江大学, 2015.
|
|
Ren T. Simulation and operation optimization of solar tower power system based on simultaneous equations[D]. Hangzhou: Zhejiang University, 2015.
|
30 |
孙嘉. 超临界二氧化碳循环发电系统动态特性及控制应用分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
Sun J. Characteristic simulation and control of supercritical carbon dioxide cycle power generation system[D]. Harbin: Harbin Institute of Technology, 2018.
|
31 |
何青, 郝银萍, 刘文毅. 一种新型跨临界压缩二氧化碳储能系统热力分析与改进[J]. 华北电力大学学报 (自然科学版), 2020, 47(5): 93-101.
|
|
He Q, Hao Y P, Liu W Y. Thermodynamic analysis and improvement of novel trans-critical compressed carbon dioxide energy storage system[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(5): 93-101.
|
32 |
Liu Z, Liu B, Guo J Z, et al. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2019, 198: 111807.
|
33 |
Deng T R, Li X H, Wang Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180: 292-302.
|
34 |
Bradshaw R W, Dawson D B, De La Rosa W, et al. Final test and evaluation results from the solar two project[R]. Livermore, CA (United States): Sandia National Lab, 2002.
|
35 |
李佳燕.太阳能热发电系统接收器的建模仿真及控制算法研究[D]. 杭州: 浙江大学, 2015.
|
|
Li J Y. Research on modeling, simulation and control algorithm of the receiver in a solar power station[D]. Hangzhou: Zhejiang University, 2015.
|