CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 685-694.DOI: 10.11949/0438-1157.20231212
• Energy and environmental engineering • Previous Articles Next Articles
Yuhua YIN(), Can FANG(), Qingfeng YI(), Guang LI()
Received:
2023-11-21
Revised:
2024-01-05
Online:
2024-04-10
Published:
2024-02-25
Contact:
Qingfeng YI, Guang LI
通讯作者:
易清风,李广
作者简介:
尹玉华(2001—),女,本科,2941952904@qq.com基金资助:
CLC Number:
Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery[J]. CIESC Journal, 2024, 75(2): 685-694.
尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694.
Add to citation manager EndNote|Ris|BibTeX
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 180 | 0.40 | 40.5 | 0.65 | 16.1 |
IE-gr | 180 | 0.57 | 44.9 | 0.83 | 20.9 |
IE-cn | 180 | 0.50 | 49.3 | 0.76 | 31.7 |
Table 1 Cycling discharge/charge results of IE-ab, IE-gr and IE-cn battery at 0.2 mA·cm-2
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 180 | 0.40 | 40.5 | 0.65 | 16.1 |
IE-gr | 180 | 0.57 | 44.9 | 0.83 | 20.9 |
IE-cn | 180 | 0.50 | 49.3 | 0.76 | 31.7 |
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 67 | 0.85 | 34.7 | 1.13 | 10.4 |
IE-gr | 107 | 0.81 | 37.2 | 1.11 | 15.0 |
IE-cn | 119 | 0.82 | 45.6 | 1.09 | 17.4 |
Table 2 Cycling discharge/charge results of IE-ab, IE-gr and IE-cn battery at 1.0 mA·cm-2
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 67 | 0.85 | 34.7 | 1.13 | 10.4 |
IE-gr | 107 | 0.81 | 37.2 | 1.11 | 15.0 |
IE-cn | 119 | 0.82 | 45.6 | 1.09 | 17.4 |
Fig.2 Cyclic voltammograms at different scan rates in 4 mol·L-1 NH4Cl+1 mol·L-1 KCl electrolyte, and the effect of the scan rate on the anodic and cathodic charging current taken from center of each CV at 0.10 V(vs Ag/AgCl)
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 51 | 1.31 | 14.5 | 1.47 | 1.4 |
IE-gr | 180 | 1.06 | 22.3 | 1.26 | 18.6 |
IE-cn | 180 | 0.94 | 29.7 | 1.27 | 33.8 |
Table 3 Cycling discharge/charge results of IE-ab, IE-gr and IE-cn battery at 0.6 mA·cm-2
Battery | Cycling number | Voltage gap of charge/ discharge at initial cycle/V | Voltage efficiency at initial cycle/% | Voltage gap of charge /discharge at last cycle/V | Voltage efficiency at last cycle/% |
---|---|---|---|---|---|
IE-ab | 51 | 1.31 | 14.5 | 1.47 | 1.4 |
IE-gr | 180 | 1.06 | 22.3 | 1.26 | 18.6 |
IE-cn | 180 | 0.94 | 29.7 | 1.27 | 33.8 |
Fig.5 Polarization and power density curves of iron-air batteries with different iron electrodes in 4 mol·L-1 NH4Cl+1 mol·L-1 KCl and 0.5 mol·L-1 K2SO4 electrolyte
Fig.6 Electrochemical impedance spectra of IE-cn electrode before and after 10 h cycling charge/discharge in 4 mol·L-1 NH4Cl+1 mol·L-1 KCl and 0.5 mol·L-1 K2SO4 electrolyte
Fig.8 X- ray diffraction spectra (a) and SEM images [(b), (c)] of IE-cn electrode before and after 10 h cycling charge/discharge in 4 mol·L-1 NH4Cl+1 mol·L-1 KCl electrolyte
1 | Villanueva-Martínez N I, Alegre C, Rubín J, et al. Investigation of the properties influencing the deactivation of iron electrodes in iron-air batteries[J]. Electrochimica Acta, 2023, 465: 142964. |
2 | Hang B T, Van Dang T, Van Quy N. Effect of the charging conditions on the cycle performance of Fe2O3/C composite anodes for iron-air batteries[J]. Journal of Electronic Materials, 2022, 51(5): 2168-2177. |
3 | Li Y G, Lu J. Metal-air batteries: will they be the future electrochemical energy storage device of choice?[J]. ACS Energy Letters, 2017, 2(6): 1370-1377. |
4 | 马洪运, 范永生, 王保国. 锌-空气电池电解液Zn2+浓度对析氢过程的影响 [J]. 化工学报, 2014, 65(7):2843-2848. |
Ma H Y, Fan Y S, Wang B G. Effects of Zn2+ concentration upon hydrogen evolution reaction for zinc-air battery[J]. CIESC Journal, 2014, 65(7):2843-2848. | |
5 | Bui H T, Vu T M. Hydrothermal preparation of Fe2O3 nanoparticles for Fe-air battery anodes[J]. Journal of Electronic Materials, 2019, 48(11): 7123-7130. |
6 | Manohar A K, Malkhandi S, Yang B, et al. A high-performance rechargeable iron electrode for large-scale battery-based energy storage[J]. Journal of the Electrochemical Society, 2012, 159(8): A1209-A1214. |
7 | Öjefors L, Carlsson L. An iron—air vehicle battery[J]. Journal of Power Sources, 1978, 2(3): 287-296. |
8 | McKerracher R D, Ponce de Leon C, Wills R G A, et al. A review of the iron-air secondary battery for energy storage[J]. ChemPlusChem, 2015, 80(2): 323-335. |
9 | Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192. |
10 | Egashira M, Kushizaki J Y, Yoshimoto N, et al. The effect of dispersion of nano-carbon on electrochemical behavior of Fe/nano-carbon composite electrode[J]. Journal of Power Sources, 2008, 183(1): 399-402. |
11 | Weinrich H, Come J, Tempel H, et al. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries[J]. Nano Energy, 2017, 41: 706-716. |
12 | Figueredo-Rodríguez H A, McKerracher R D, Insausti M, et al. A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation[J]. Journal of the Electrochemical Society, 2017, 164(6): A1148-A1157. |
13 | Malkhandi S, Yang B, Manohar A K, et al. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. Journal of the American Chemical Society, 2013, 135(1): 347-353. |
14 | McKerracher R D, Figueredo-Rodriguez H A, Alegre C, et al. Improving the stability and discharge capacity of nanostructured Fe2O3/C anodes for iron-air batteries and investigation of 1-octhanethiol as an electrolyte additive[J]. Electrochimica Acta, 2019, 318: 625-634. |
15 | 贾玉龙, 王菁, 桂裕鹏, 等. 导电剂梯度化分布对锂离子电池性能的影响[J]. 电源技术, 2023, 47(1): 37-40. |
Jia Y L, Wang J, Gui Y P, et al. Influence of gradient distribution of conductive agent on performance of lithium ion battery[J]. Chinese Journal of Power Sources, 2023, 47(1): 37-40. | |
16 | 张琦钰, 高利军, 苏宇航, 等. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 47(7): 2753-2772. |
Zhang Q Y, Gao L J, Su Y H, et al. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide[J]. CIESC Journal, 2023, 47(7): 2753-2772. | |
17 | Yu X W, Manthiram A. A voltage-enhanced, low-cost aqueous iron-air battery enabled with a mediator-ion solid electrolyte[J]. ACS Energy Letters, 2017, 2(5): 1050-1055. |
18 | Li L J, Manthiram A. Long-life, high-voltage acidic Zn-air batteries[J]. Advanced Energy Materials, 2016, 6(5): 1502054. |
19 | Lim H K, Lim H D, Park K Y, et al. Toward a lithium-“air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell[J]. Journal of the American Chemical Society, 2013, 135(26): 9733-9742. |
20 | Xu S M, Lau S, Archer L A. CO2 and ambient air in metal-oxygen batteries: steps towards reality[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1070-1079. |
21 | Chen A L, Yi Q F, Sheng K, et al. Mesoporous N-P codoped carbon nanosheets as superior cathodic catalysts of neutral metal-air batteries[J]. Langmuir, 2021, 37(43): 12616-12628. |
22 | Yu L, Yi Q F, Yang X K, et al. An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries[J]. Science China Materials, 2019, 62(9): 1251-1264. |
23 | Yang X K, Yi Q F, Sheng K, et al. CoNi-doped C-N/CNT nanocomposites as cathodic catalysts of neutral Zn-air battery[J]. Ionics, 2019, 25(10): 4817-4830. |
24 | Trasatti S, Petrii O A. Real surface area measurements in electrochemistry[J]. Pure and Applied Chemistry, 1991, 63(5): 711-734. |
25 | Bu K, Wang J T. Topological states in the polymerized carbon nanotubes[J]. Physics Letters A, 2023, 480: 128936. |
26 | Arroyo-Gascón O, Fernández-Perea R, Morell E S, et al. Universality of moiré physics in collapsed chiral carbon nanotubes[J]. Carbon, 2023, 205: 394-401. |
27 | Deng X S, Kang N, Zhang Z Y. Carbon-based cryoelectronics: graphene and carbon nanotube[J]. Chip, 2023, 2(4): 100064. |
28 | Roy A, Gupta K K, Naskar S, et al. Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs[J]. Materials Today Communications, 2021, 26: 102021. |
29 | Fang C, Tang X M, Wang J Y, et al. Performance of iron-air battery with iron nanoparticle-encapsulated C-N composite electrode[J]. Frontiers in Energy, 2023, 17(6): 0913. |
30 | Trinh T A, Bui T H. α-Fe2O3 urchins synthesized by a facile hydrothermal route as an anode for an Fe-air battery[J]. Journal of Materials Engineering and Performance, 2020, 29(2): 1245-1252. |
31 | Tan W K, Asami K, Maegawa K, et al. Formation of Fe-embedded graphitic carbon network composites as anode materials for rechargeable Fe-air batteries[J]. Energy Storage, 2020, 2(6): e196. |
32 | Frausto C, Avila-García A. Pyrrole-added Fe2O3 films by ultrasonic spray pyrolisis[J]. Superficies y VacíO, 2009, 22(4): 15-19. |
[1] | Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries [J]. CIESC Journal, 2024, 75(2): 412-428. |
[2] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
[3] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[4] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[7] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[12] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||