CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1209-1221.DOI: 10.11949/0438-1157.20231262
• Reviews and monographs • Previous Articles Next Articles
Yuwei YANG(), Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE(), Bingbing SUN
Received:
2023-12-04
Revised:
2024-03-27
Online:
2024-06-06
Published:
2024-04-25
Contact:
Dan GE
杨玉维(), 李敏, 要智颖, 孙沁林, 刘洋, 葛丹(), 孙冰冰
通讯作者:
葛丹
作者简介:
杨玉维(1999—),女,硕士研究生,yangyuwei@mail.dlut.edu.cn
基金资助:
CLC Number:
Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems[J]. CIESC Journal, 2024, 75(4): 1209-1221.
杨玉维, 李敏, 要智颖, 孙沁林, 刘洋, 葛丹, 孙冰冰. 类器官芯片在纳米药物递送系统研究中的应用及前景[J]. 化工学报, 2024, 75(4): 1209-1221.
Add to citation manager EndNote|Ris|BibTeX
类别 | 代表材料 | 性能 | 主要应用 |
---|---|---|---|
聚合物纳米 载体 | 聚乳酸-羟基乙酸共聚物、聚己内酯、聚乙二醇、壳聚糖 | 聚合物外壳可增加所负载蛋白质和核酸的稳定性,使其免受蛋白酶和核酸酶的降解;可生物降解;生物相容性好 | 体外激活药物释放、靶向递送、光动力疗法、光热疗法 、生物传感、组织成像 |
脂质体纳米 载体 | 磷脂聚合物纳米胶束、脂质体、固体脂质体纳米颗粒 | 可以同时包载水溶性药物和脂溶性药物;具有可修饰性;增强药物靶向性;延长药物作用时间、提高药物稳定性 | 基因递送、光动力疗法、光热疗法、基因疗法、组织工程 |
水凝胶纳米 载体 | DNA-水凝胶、光响应型水凝胶、ATP响应型水凝胶 | 比表面积大;装载效率高;稳定性好;可通过控制水凝胶网格降解、溶胀以及机械变形来实现对药物的控释 | 刺激响应型药物释放、基因递送、组织工程 |
无机纳米 载体 | 金纳米颗粒、二氧化硅纳米颗粒、 氧化铁纳米颗粒 | 合成简单;比表面积大;表面易修饰;具有光热和光动力效应;具有良好的荧光特性 | 荧光生物成像、多光子生物成像、磁引导药物递送、基因治疗 |
Table 1 Performance and applications of several types of nanodrug delivery carriers
类别 | 代表材料 | 性能 | 主要应用 |
---|---|---|---|
聚合物纳米 载体 | 聚乳酸-羟基乙酸共聚物、聚己内酯、聚乙二醇、壳聚糖 | 聚合物外壳可增加所负载蛋白质和核酸的稳定性,使其免受蛋白酶和核酸酶的降解;可生物降解;生物相容性好 | 体外激活药物释放、靶向递送、光动力疗法、光热疗法 、生物传感、组织成像 |
脂质体纳米 载体 | 磷脂聚合物纳米胶束、脂质体、固体脂质体纳米颗粒 | 可以同时包载水溶性药物和脂溶性药物;具有可修饰性;增强药物靶向性;延长药物作用时间、提高药物稳定性 | 基因递送、光动力疗法、光热疗法、基因疗法、组织工程 |
水凝胶纳米 载体 | DNA-水凝胶、光响应型水凝胶、ATP响应型水凝胶 | 比表面积大;装载效率高;稳定性好;可通过控制水凝胶网格降解、溶胀以及机械变形来实现对药物的控释 | 刺激响应型药物释放、基因递送、组织工程 |
无机纳米 载体 | 金纳米颗粒、二氧化硅纳米颗粒、 氧化铁纳米颗粒 | 合成简单;比表面积大;表面易修饰;具有光热和光动力效应;具有良好的荧光特性 | 荧光生物成像、多光子生物成像、磁引导药物递送、基因治疗 |
1 | Liu J Y, Li S Q, Wang J, et al. Application of nano drug delivery system (NDDS) in cancer therapy: a perspective[J]. Recent Patents on Anti-Cancer Drug Discovery, 2022, 18(2): 125-132. |
2 | Sun M C, Xu X L, Lou X F, et al. Recent progress and future directions: the nano-drug delivery system for the treatment of vitiligo[J]. International Journal of Nanomedicine, 2020, 15: 3267-3279. |
3 | Wang C D, Li F S, Zhang T A, et al. Recent advances in anti-multidrug resistance for nano-drug delivery system[J]. Drug Delivery, 2022, 29(1): 1684-1697. |
4 | Zhang Y, Wu Y J, Du H J, et al. Nano-drug delivery systems in oral cancer therapy: recent developments and prospective[J]. Pharmaceutics, 2023, 16(1): 7. |
5 | Mu W W, Chu Q H, Liu Y J, et al. A review on nano-based drug delivery system for cancer chemoimmunotherapy[J]. Nano-Micro Letters, 2020, 12(1): 142. |
6 | Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures—a comparison of different types of cancer cell cultures[J]. Archives of Medical Science, 2018, 14(4): 910-919. |
7 | Bao Y L, Wang L, Pan H T, et al. Animal and organoid models of liver fibrosis[J]. Frontiers in Physiology, 2021, 12: 666138. |
8 | Jiang X J, Ouyang L, Peng Q, et al. Organoids: opportunities and challenges of cancer therapy[J]. Frontiers in Cell and Developmental Biology, 2023, 11: 1232528. |
9 | Wang H, Ning X F, Zhao F, et al. Human organoids-on-chips for biomedical research and applications[J]. Theranostics, 2024, 14(2): 788-818. |
10 | Khan A U, Khan M, Cho M H, et al. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure[J]. Bioprocess and Biosystems Engineering, 2020, 43(8): 1339-1357. |
11 | De Jong W H, Borm P J A. Drug delivery and nanoparticles: applications and hazards[J]. International Journal of Nanomedicine, 2008, 3(2): 133-149. |
12 | Dobrovolskaia M A, McNeil S E. Immunological properties of engineered nanomaterials[J]. Nature Nanotechnology, 2007, 2: 469-478. |
13 | Shi J J, Votruba A R, Farokhzad O C, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications[J]. Nano Letters, 2010, 10(9): 3223-3230. |
14 | Guo Y Y, Ma Y B, Chen X, et al. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments[J]. ACS Nano, 2023, 17(3): 2813-2828. |
15 | Onugwu A L, Nwagwu C S, Onugwu O S, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2023, 354: 465-488. |
16 | Sun B B, Xia T. Nanomaterial-based vaccine adjuvants[J]. Journal of Materials Chemistry B, 2016, 4(33): 5496-5509. |
17 | 高钟镐. 新型药物递送系统技术在药物研发中的应用和展望[J]. 中国药科大学学报, 2023, 54(1): 1-4. |
Gao Z H. Application and prospect of new drug delivery system in drug research and development[J]. Journal of China Pharmaceutical University, 2023, 54(1): 1-4. | |
18 | Chen G Y, Roy I, Yang C H, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chemical Reviews, 2016, 116(5): 2826-2885. |
19 | Tewari A K, Upadhyay S C, Kumar M, et al. Insights on development aspects of polymeric nanocarriers: the translation from bench to clinic[J]. Polymers, 2022, 14(17): 3545. |
20 | Okada M. Chemical syntheses of biodegradable polymers[J]. Progress in Polymer Science, 2002, 27(1): 87-133. |
21 | Wei D S, Sun Y, Zhu H, et al. Stimuli-responsive polymer-based nanosystems for cancer theranostics[J]. ACS Nano, 2023, 17(23): 23223-23261. |
22 | Khan R U, Shao J N, Liao J Y, et al. pH-triggered cancer-targeting polymers: from extracellular accumulation to intracellular release[J]. Nano Research, 2023, 16(4): 5155-5168. |
23 | Nizamov T R, Iliasov A R, Vodopyanov S S, et al. Study of cytotoxicity and internalization of redox-responsive iron oxide nanoparticles on PC-3 and 4T1 cancer cell lines[J]. Pharmaceutics, 2022, 15(1): 127. |
24 | 盛竹君, 徐维平, 徐婷娟, 等. 脂质体药物传输系统的研究新进展[J]. 中国药业, 2015, 24(23):6-9. |
Sheng Z J, Xu W P, Xu T J, et al. New developments in liposomal drug delivery systems[J]. China Pharmaceuticals, 2015, 24(23): 6-9. | |
25 | Hajj K A, Whitehead K A. Tools for translation: non-viral materials for therapeutic mRNA delivery[J]. Nature Reviews Materials, 2017, 2(10): 17056. |
26 | 王赫, 董丽, 邵明敬, 等. 芦荟大黄素纳米脂质体介导光动力疗法抑制人口腔癌CAL-27细胞增殖并促进其自噬[J]. 现代肿瘤医学, 2021, 29(5): 719-723. |
Wang H, Dong L, Shao M J, et al. Aloe-emodin nanoliposome-mediated photodynamic therapy inhibits proliferation and promotes autophagy of human oral cancer CAL-27 cells[J]. Journal of Modern Oncology, 2021, 29(5): 719-723. | |
27 | Zhong R B, Talebian S, Mendes B B, et al. Hydrogels for RNA delivery[J]. Nature Materials, 2023, 22: 818-831. |
28 | Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2: 751-760. |
29 | Vinogradov S V, Bronich T K, Kabanov A V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells[J]. Advanced Drug Delivery Reviews, 2002, 54(1): 135-147. |
30 | Vicent M J, Duncan R. Polymer conjugates: nanosized medicines for treating cancer[J]. Trends in Biotechnology, 2006, 24(1): 39-47. |
31 | Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy[J]. Journal of the American Chemical Society, 2015, 137(4): 1412-1415. |
32 | Shi Z Q, Zhou Y, Fan T J, et al. Inorganic nano-carriers based smart drug delivery systems for tumor therapy[J]. Smart Materials in Medicine, 2020, 1: 32-47. |
33 | 闫正东, 梁晓蕾, 汤会玲. 功能化介孔二氧化硅纳米材料的应用[J]. 纳米技术, 2019, 3(9): 93-100. |
Yan Z D, Liang X L, Tang H L. Application of functionalized mesoporous silica nanomaterials[J]. Hans Journal of Nanotechnology, 2019, 3(9): 93-100. | |
34 | Zhang S Q, Sun J. Nano-drug delivery system for the treatment of acute myelogenous leukemia[J]. Journal of Zhejiang University. Medical Sciences, 2022, 51(2): 233-240. |
35 | Ye L, Yong K T, Liu L W, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots[J]. Nature Nanotechnology, 2012, 7: 453-458. |
36 | Berishvili E, Casiraghi F, Amarelli C, et al. Mini-organs forum: how to advance organoid technology to organ transplant community[J]. Transplant International: Official Journal of the European Society for Organ Transplantation, 2021, 34(9): 1588-1593. |
37 | Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release[J]. Chemical Reviews, 1999, 99(11): 3181-3198. |
38 | Gref R, Minamitake Y, Peracchia M T, et al. Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994, 263(5153): 1600-1603. |
39 | Kwak S Y, Lew T T S, Sweeney C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechnology, 2019, 14: 447-455. |
40 | Bordat A, Boissenot T, Nicolas J, et al. Thermoresponsive polymer nanocarriers for biomedical applications[J]. Advanced Drug Delivery Reviews, 2019, 138: 167-192. |
41 | Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers[J]. Advanced Drug Delivery Reviews, 2022, 182: 114097. |
42 | Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles[J]. Advanced Materials, 2019, 31(33): e1902575. |
43 | Aditya N P, Macedo A S, Doktorovova S, et al. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE)[J]. LWT-Food Science and Technology, 2014, 59(1): 115-121. |
44 | Li Y, Fu R Z, Duan Z G, et al. Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing[J]. ACS Nano, 2022, 16(5): 7486-7502. |
45 | Wang W X, Zhang G R, Wang Y Y, et al. An injectable and thermosensitive hydrogel with nano-aided NIR-Ⅱ phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration[J]. Journal of Nanobiotechnology, 2023, 21(1): 367. |
46 | Ehlerding E B, Chen F, Cai W B. Biodegradable and renal clearable inorganic nanoparticles[J]. Advanced Science, 2016, 3(2): 1500223. |
47 | Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery[J]. Advanced Functional Materials, 2020, 30(2): 1902634. |
48 | Hirakawa H, Shiota S, Shiraishi Y, et al. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light[J]. ACS Catalysis, 2016, 6(8): 4976-4982. |
49 | Zhao C, Meng L H, Chu H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034. |
50 | Mitchell M J, Billingsley M M, Haley R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nature Reviews Drug Discovery, 2021, 20: 101-124. |
51 | Prasad M, Kumar R, Buragohain L, et al. Organoid technology: a reliable developmental biology tool for organ-specific nanotoxicity evaluation[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 696668. |
52 | Salvioni L, Rizzuto M A, Bertolini J A, et al. Thirty years of cancer nanomedicine: success, frustration, and hope[J]. Cancers (Basel), 2019, 11(12): 1855. |
53 | Carton F, Malatesta M. Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine[J]. European Journal of Histochemistry, 2022, 66(4): 3603. |
54 | Anselmo A C, Mitragotri S. Nanoparticles in the clinic: an update[J]. Bioengineering & Translational Medicine, 2019, 4(3): e10143. |
55 | Al-Jamal K T, Al-Jamal W T, Wang J T, et al. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo [J]. ACS Nano, 2013, 7(3): 1905-1917. |
56 | Yoshida G J. Applications of patient-derived tumor xenograft models and tumor organoids[J]. Journal of Hematology&Oncology, 2020, 13(1): 4. |
57 | Zushin P J H, Mukherjee S, Wu J C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches[J]. The Journal of Clinical Investigation, 2023, 133(21): e175824. |
58 | Mahapatra C, Lee R D, Paul M K. Emerging role and promise of nanomaterials in organoid research[J]. Drug Discovery Today, 2022, 27(3): 890-899. |
59 | Wechsler M E, Ramirez J E V, Peppas N A. 110th Anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer's disease: crossing the blood-brain barrier[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15079-15087. |
60 | Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research[J]. Journal of Translational Medicine, 2022, 20(1): 206. |
61 | Corrò C, Novellasdemunt L, Li V S W. A brief history of organoids[J]. American Journal of Physiology. Cell Physiology, 2020, 319(1): C151-C165. |
62 | Kim J, Koo B K, Knoblich J A. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. |
63 | Xu H X, Jiao Y, Qin S, et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine[J]. Experimental Hematology & Oncology, 2018, 7: 30. |
64 | Choi W H, Bae D H, Yoo J. Current status and prospects of organoid-based regenerative medicine[J]. BMB Reports, 2023, 56(1): 10-14. |
65 | Kruitwagen H S, Oosterhoff L A, van Wolferen M E, et al. Long-term survival of transplanted autologous canine liver organoids in a COMMD1-deficient dog model of metabolic liver disease[J]. Cells, 2020, 9(2): 410. |
66 | Tong T J, Qi Y J, Rollins D, et al. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms[J]. Bioactive Materials, 2023, 30: 116-128. |
67 | Davoudi Z, Peroutka-Bigus N, Bellaire B, et al. Gut organoid as a new platform to study alginate and chitosan mediated plga nanoparticles for drug delivery[J]. Marine Drugs, 2021, 19(5): 282. |
68 | Wang W W, Cai J, Wen J Y, et al. Boosting ferroptosis via abplatin(Ⅳ) for treatment of platinum-resistant recurrent ovarian cancer[J]. Nano Today, 2022, 44: 101459. |
69 | Weng G H, Tao J X, Liu Y Z, et al. Organoid: Bridging the gap between basic research and clinical practice[J]. Cancer Letters, 2023, 572: 216353. |
70 | Xiao R R, Lv T, Tu X, et al. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury[J]. Biotechnology and Bioengineering, 2021, 118(12): 4687-4698. |
71 | Rumsey J W, Lorance C, Jackson M, et al. Classical complement pathway inhibition in a “human-on-a-chip” model of autoimmune demyelinating neuropathies[J]. Advances in Therapy, 2022, 5(6): 2200030. |
72 | Koike H, Iwasawa K, Ouchi R, et al. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells[J]. Nature Protocols, 2021, 16(2): 919-936. |
73 | Bruun J, Kryeziu K, Eide P W, et al. Patient-derived organoids from multiple colorectal cancer liver metastases reveal moderate intra-patient pharmacotranscriptomic heterogeneity[J]. Clinical Cancer Research, 2020, 26(15): 4107-4119. |
74 | Obaid G, Bano S, Mallidi S, et al. Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia?[J]. Nano Letters, 2019, 19(11): 7573-7587. |
75 | Shen C, Zhang Z J, Li X X, et al. Intersection of nanomaterials and organoids technology in biomedicine[J]. Frontiers in Immunology, 2023, 14: 1172262. |
76 | Zhao D K, Liang J, Huang X Y, et al. Organoids technology for advancing the clinical translation of cancer nanomedicine[J]. WIREs Nanomedicine and Nanobiotechnology, 2023, 15(5): e1892. |
77 | Huang C Z, Zhou Y, Feng X Y, et al. Delivery of engineered primary tumor-derived exosomes effectively suppressed the colorectal cancer chemoresistance and liver metastasis[J]. ACS Nano, 2023, 17(11): 10313-10326. |
78 | Kromidas E, Geier A, Weghofer A, et al. Immunocompetent PDMS-free organ-on-chip model of cervical cancer integrating patient-specific cervical fibroblasts and neutrophils[J]. Advanced Healthcare Materials, 2023: e2302714. |
79 | Tavakol D N, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration[J]. Cell Stem Cell, 2021, 28(6): 993-1015. |
80 | Imparato G, Urciuolo F, Netti P A. Organ on chip technology to model cancer growth and metastasis[J]. Bioengineering-Basel, 2022, 9(1): 28. |
81 | Yoon S, Kilicarslan You D, Jeong U, et al. Microfluidics in high-throughput drug screening: organ-on-a-chip and C. elegans-based innovations[J]. Biosensors (Basel), 2024, 14(1): 55. |
82 | Rogers K W, Schier A F. Morphogen gradients: from generation to interpretation[J]. Annual Review of Cell and Developmental Biology, 2011, 27: 377-407. |
83 | Marti-Figueroa C R, Ashton R S. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis[J]. Acta Biomaterialia, 2017, 54: 35-44. |
84 | Kruse C R, Singh M, Targosinski S, et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study[J]. Wound Repair Regen, 2017, 25(2): 260-269. |
85 | Sarkar S, Srivastava T P, Sahoo O S, et al. Applications of quantum dots in preventive oncology[J]. Asian Pacific Journal of Cancer Prevention, 2024, 25(3): 747-756. |
86 | Chen G B, Lv Y G, Guo P, et al. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment[J]. Current Stem Cell Research & Therapy, 2013, 8(4): 313-323. |
87 | Takahashi M, Ishida T, Traub O, et al. Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress[J]. Journal of Vascular Research, 1997, 34(3): 212-219. |
88 | Ribeiro A J S, Ang Y S, Fu J D, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12705-12710. |
89 | Chaudhuri O, Cooper-White J, Janmey P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546. |
90 | Jiang Y F, Zhang H Y, Wang J, et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J]. Journal of Hematology & Oncology, 2022, 15(1): 34. |
91 | Khorsandi D, Yang J W, Foster S, et al. Patient-derived organoids as therapy screening platforms in cancer patients[J]. Advanced Healthcare Materials, 2024: 2302331. |
92 | Zhao J S, Shi S, Qu H Y, et al. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth[J]. Nature Metabolism, 2022, 4(2): 239-253. |
93 | Lee H N, Choi Y Y, Kim J W, et al. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip[J]. Nano Convergence, 2021, 8(1): 35. |
94 | Fu A C, Mao S F, Kasai N, et al. Dynamic tissue model in vitro and its application for assessment of microplastics-induced toxicity to air-blood barrier (ABB)[J]. Biosensors & Bioelectronics, 2024, 246: 115858. |
95 | Telles-Silva K A, Pacheco L, Komatsu S, et al. Applied hepatic bioengineering: modeling the human liver using organoid and liver-on-a-chip technologies[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 845360. |
96 | Mandrycky C J, Howard C C, Rayner S G, et al. Organ-on-a-chip systems for vascular biology[J]. Journal of Molecular and Cellular Cardiology, 2021, 159: 1-13. |
97 | Kroll K T, Mata M M, Homan K A, et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(35): e2305322120. |
98 | Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. |
99 | Zhang Y S, Aleman J, Shin S R, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2293-E2302. |
100 | Lopez-Muñoz G A, Mughal S, Ramón-Azcón J. Sensors and biosensors in organs-on-a-chip platforms[J]. Advances in Experimental Medicine and Biology, 2022, 1379: 55-80. |
101 | Saglam-Metiner P, Yildirim E, Dincer C, et al. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity[J]. Microchimica Acta, 2024, 191(1): 71. |
102 | Zhu J Y, He J C, Verano M, et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation[J]. Lab on a Chip, 2018, 18(23): 3550-3560. |
103 | Huh D, Matthews B D, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
104 | Jastrzębska E, Bazylińska U, Bułka M, et al. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers[J]. Biomicrofluidics, 2016, 10(1): 014116. |
105 | Ahn S I, Sei Y J, Park H J, et al. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms[J]. Nature Communications, 2020, 11: 175. |
106 | Kavanagh E, Allenby G. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation[J]. SLAS Discovery: Advancing Life Sciences R & D, 2017, 22(5): 583-601. |
107 | Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives[J]. Cancer Letters, 2012, 320(2): 130-137. |
108 | Dávila S, Cacheux J, Rodríguez I. Microvessel-on-chip fabrication for the in vitro modeling of nanomedicine transport[J]. ACS Omega, 2021, 6(39): 25109-25115. |
109 | Lee S, Kim S, Koo D J, et al. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine[J]. ACS Nano, 2021, 15(1): 338-350. |
110 | Su X, Zhang X Y, Liu W J, et al. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy[J]. Seminars in Cancer Biology, 2022, 86(Pt 2): 929-942. |
111 | Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, et al. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening[J]. Talanta, 2024, 266: 124901. |
112 | Yang X Y, Liu N, Li X Y, et al. A review on the effect of traditional Chinese medicine against anthracycline-induced cardiac toxicity[J]. Frontiers in Pharmacology, 2018, 9: 444. |
113 | Hennis K, Rötzer R D, Rilling J, et al. In vivo and ex vivo electrophysiological study of the mouse heart to characterize the cardiac conduction system, including atrial and ventricular vulnerability[J]. Nature Protocols, 2022, 17(5): 1189-1222. |
114 | Ho D, Zhao X, Gao S M, et al. Heart rate and electrocardiography monitoring in mice[J]. Current Protocols in Mouse Biology, 2011, 1: 123-139. |
115 | Cheng Y X, Tao J S, Zhang Y Q, et al. Shape and shear stress impact on the toxicity of mesoporous silica nanoparticles: in vitro and in vivo evidence[J]. Molecular Pharmaceutics, 2023, 20(6): 3187-3201. |
116 | Lu R X Z, Lai B F L, Benge T, et al. Heart-on-a-chip platform for assessing toxicity of air pollution related nanoparticles[J]. Advanced Materials Technologies, 2021, 6(2): 2000726. |
117 | Li Z A, Tuan R S. Towards establishing human body-on-a-chip systems[J]. Stem Cell Research & Therapy, 2022, 13(1): 431. |
118 | Soldatow V Y, Lecluyse E L, Griffith L G, et al. In vitro models for liver toxicity testing[J]. Toxicology Research, 2013, 2(1): 23-39. |
119 | Joseph X, Akhil V, Arathi A, et al. Comprehensive development in organ-on-a-chip technology[J]. Journal of Pharmaceutical Sciences, 2022, 111(1): 18-31. |
120 | Esch M B, Mahler G J, Stokol T, et al. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury[J]. Lab On a Chip, 2014, 14(16): 3081-3092. |
121 | Ronaldson-Bouchard K, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow[J]. Nature Biomedical Engineering, 2022, 6(4): 351-371. |
122 | Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nature Biomedical Engineering, 2020, 4: 407-420. |
[1] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[2] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[3] | Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries [J]. CIESC Journal, 2024, 75(2): 412-428. |
[4] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[5] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[6] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Xuhao JIANG, Yuanchao LIU, Yifan XU, Duan LI, Xinhao LIU, Zishuo LI. Thermoelectric transport properties of graphyne with different structures based on first principles [J]. CIESC Journal, 2023, 74(12): 5016-5026. |
[12] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[13] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[14] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[15] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||