1 |
赵杨. 污水处理过程的智能优化与控制方法研究[D]. 无锡: 江南大学, 2022.
|
|
Zhao Y. Research on intelligent optimization and control method of wastewater treatment process[D]. Wuxi: Jiangnan University, 2022.
|
2 |
姚邹静, 赵春晖, 李元龙, 等. 面向工业软测量应用的定制化生成对抗数据填补模型[J]. 控制与决策, 2021, 36(12): 2929-2936.
|
|
Yao Z J, Zhao C H, Li Y L, et al. Customized generative adversarial data imputation model for industrial soft sensing[J]. Control and Decision, 2021, 36(12): 2929-2936.
|
3 |
蒋昕祎, 李绍军, 金宇辉. 基于慢特征重构与改进DPLS的软测量建模[J]. 华东理工大学学报(自然科学版), 2018, 44(4): 535-542.
|
|
Jiang X Y, Li S J, Jin Y H. Soft sensor modeling based on enhancing DPLS and slow feature reconstruction[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44(4): 535-542.
|
4 |
郭明. 软测量技术的研究及应用[D]. 杭州: 浙江工业大学, 2019.
|
|
Guo M. Research and applications of soft measurement technique[D]. Hangzhou: Zhejiang University of Technology, 2019.
|
5 |
郭润元. 数据与知识混合驱动的深度学习工业软测量方法研究[D]. 西安: 西安理工大学, 2023.
|
|
Guo R Y. Deep learning-based industrial soft-sensing method driven by hybrid data and knowledge[D]. Xi’an: Xi’an University of Technology, 2023.
|
6 |
Shao W M, Tian X M. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models[J]. Chemical Engineering Research and Design, 2015, 95: 113-132.
|
7 |
邵伟明, 田学民, 宋执环. 基于集成学习的多产品化工过程软测量建模方法[J]. 化工学报, 2018, 69(6): 2551-2559.
|
|
Shao W M, Tian X M, Song Z H. Ensemble learning-based soft sensor method for multi-product chemical processes[J]. CIESC Journal, 2018, 69(6): 2551-2559.
|
8 |
阎高伟, 贺敏, 汤健, 等. 基于最大均值差异多源域迁移学习的湿式球磨机负荷参数软测量[J]. 控制与决策, 2018, 33(10): 1795-1800.
|
|
Yan G W, He M, Tang J, et al. Soft sensor of wet ball mill load based on maximum mean discrepancy multi-source domain transfer learning[J]. Control and Decision, 2018, 33(10): 1795-1800.
|
9 |
Zhang F, Li N Q, Li L H, et al. A local semi-supervised ensemble learning strategy for the data-driven soft sensor of the power prediction in wind power generation[J]. Fuel, 2023, 333: 126435.
|
10 |
Sun Q Q, Ge Z Q. Deep learning for industrial KPI prediction: when ensemble learning meets semi-supervised data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(1): 260-269.
|
11 |
罗常伟, 王双双, 尹峻松, 等. 集成学习研究现状及展望[J]. 指挥与控制学报, 2023, 9(1): 502002.
|
|
Luo C W, Wang S S, Yin J S, et al. Research status and prospect of ensemble learning[J]. Journal of Command and Control, 2023, 9(1): 502002.
|
12 |
Anh N T N, Thang T N, Solanki V K. Machine learning and ensemble methods[J]. SpringerBriefs in Applied Sciences and Technology, 2022: 9-18.
|
13 |
Ganaie M A, Hu M H, Malik A K, et al. Ensemble deep learning: a review[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105151.
|
14 |
徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092.
|
|
Xu J W, Yang Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(6): 1082-1092.
|
15 |
张春霞, 张讲社. 选择性集成学习算法综述[J]. 计算机学报, 2011, 34(8): 1399-1410.
|
|
Zhang C X, Zhang J S. A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011, 34(8): 1399-1410.
|
16 |
Ge Z Q, Song Z H. Subspace partial least squares model for multivariate spectroscopic calibration[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 51-57.
|
17 |
田慧欣, 李坤, 孟博. 一种用于软测量建模的增量学习集成算法[J]. 控制与决策, 2015, 30(8): 1523-1526.
|
|
Tian H X, Li K, Meng B. An incremental learning ensemble algorithm for soft sensor modeling[J]. Control and Decision, 2015, 30(8): 1523-1526.
|
18 |
金怀平, 李建刚, 钱斌, 等. 基于多模态扰动的集成即时学习软测量建模[J]. 信息与控制, 2020, 49(3): 257-266.
|
|
Jin H P, Li J G, Qian B, et al. Soft sensor development based on ensemble just-in-time learning with multimodal perturbation[J]. Information and Control, 2020, 49(3): 257-266.
|
19 |
王光, 单发顺, 钱禹丞, 等. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978.
|
|
Wang G, Shan F S, Qian Y C, et al. Incipient fault detection method for chemical process based on ensemble learning transfer entropy[J]. CIESC Journal, 2023, 74(7): 2967-2978.
|
20 |
Zhou Z H, Wu J X, Tang W. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1/2): 239-263.
|
21 |
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二𫫇英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
|
|
Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706.
|
22 |
盛晓晨. 基于多模型集成的软测量建模[D]. 无锡: 江南大学, 2021.
|
|
Sheng X C. Multiple model ensemble based soft sensor development[D]. Wuxi: Jiangnan University, 2021.
|
23 |
孙子文, 金浩. 深度自编码网络的集成学习ICPS入侵检测模型[J]. 信息与控制, 2021, 50(5): 591-601.
|
|
Sun Z W, Jin H. Integrated learning ICPS intrusion detection model of deep auto-encoder network[J]. Information and Control, 2021, 50(5): 591-601.
|
24 |
Chi S Q, Li X H, Tian Y, et al. Semi-supervised learning to improve generalizability of risk prediction models[J]. Journal of Biomedical Informatics, 2019, 92: 103117.
|
25 |
Zhu J L, Ge Z Q, Song Z H. Quantum statistic based semi-supervised learning approach for industrial soft sensor development[J]. Control Engineering Practice, 2018, 74: 144-152.
|
26 |
Shao W M, Ge Z Q, Song Z H, et al. Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines[J]. Control Engineering Practice, 2019, 91: 104098.
|
27 |
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory. Madison, Wisconsin, USA. ACM, 1998: 92-100.
|
28 |
Bao L, Yuan X F, Ge Z Q. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147: 75-85.
|
29 |
李东, 刘乙奇, 黄道平. 基于Tri-training MPLS的半监督软测量模型[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 217-224.
|
|
Li D, Liu Y Q, Huang D P. Semi-supervised soft sensor model based on Tri-training MPLS[J]. Journal of East China University of Science and Technology, 2021, 47(2): 217-224.
|
30 |
赵帅. 基于集成学习的高斯过程回归软测量建模方法研究[D]. 无锡: 江南大学, 2018.
|
|
Zhao S. Research of Gaussian process regression soft sensor modeling based on ensemble learning[D]. Wuxi: Jiangnan University, 2018.
|
31 |
陈雄挺, 李扬, 史琳林. 基于图分割与协同训练的工业过程半监督软测量方法[J]. 中国仪器仪表, 2023(10): 36-42.
|
|
Chen X T, Li Y, Shi L L. Semi-supervised soft sensor modelling method based on graph segmentation and co-training[J]. China Instrumentation, 2023(10): 36-42.
|
32 |
Zhou Z H, Li M. Semisupervised regression with cotraining-style algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1479-1493.
|